Order of singularity applied to linear operators

1987 ◽  
Vol 106 (1-2) ◽  
pp. 103-111
Author(s):  
James E. Scroggs

SynopsisWe extend the notion of order of singularity for complex-valued functions, as originally set forth by Hadamard, to Banach algebra-valued functions. Restricting our attention to linear operators whose spectral radius is one, we obtain a connection between the rate of growth of the norm of iterates of a linear operator and the rate of growth of the norm of the resolvent of the operator near the spectrum of the operator. In the finite dimensional case, we obtain an upper bound on the size of the Jordan block corresponding to an eigenvalue of maximum modulus.

Author(s):  
S. J. Bernau ◽  
F. Smithies

We recall that a bounded linear operator T in a Hilbert space or finite-dimensional unitary space is said to be normal if T commutes with its adjoint operator T*, i.e. TT* = T*T. Most of the proofs given in the literature for the spectral theorem for normal operators, even in the finite-dimensional case, appeal to the corresponding results for Hermitian or unitary operators.


2007 ◽  
Vol 50 (1) ◽  
pp. 3-10
Author(s):  
Richard F. Basener

AbstractIn this paper we introduce a nested family of spaces of continuous functions defined on the spectrum of a uniform algebra. The smallest space in the family is the uniform algebra itself. In the “finite dimensional” case, from some point on the spaces will be the space of all continuous complex-valued functions on the spectrum. These spaces are defined in terms of solutions to the nonlinear Cauchy–Riemann equations as introduced by the author in 1976, so they are not generally linear spaces of functions. However, these spaces do shed light on the higher dimensional properties of a uniform algebra. In particular, these spaces are directly related to the generalized Shilov boundary of the uniform algebra (as defined by the author and, independently, by Sibony in the early 1970s).


2002 ◽  
Vol 66 (1) ◽  
pp. 105-117
Author(s):  
Chi-Kwong Li ◽  
Leiba Rodman

The notion of the joint numerical range of several linear operators with respect to a sesquilinear form is introduced. Geometrical properties of the joint numerical range are studied, in particular, convexity and angle points, in connection with the algebraic properties of the operators. The main focus is on the finite dimensional case.


1990 ◽  
Vol 41 (1) ◽  
pp. 123-134 ◽  
Author(s):  
J.C. Amson ◽  
N. Gopal Reddy

A quadratic operator Q of Hilbert-Schmidt class on a real separable Hilbert space H is shown to be uniquely representable as a sequence of self-adjoint linear operators of Hilbert-Schmidt class on H, such that Q(x) = Σk〈Lkx, x〉uk with respect to a Hilbert basis . It is shown that with the norm | ‖Q‖ | = (Σk ‖Lk‖2)½ and inner-product 〈〈〈Q, P〉〉〉 = Σk 〈〈Lk, Mk〉〉, together with a multiplication defined componentwise through the composition of the linear components, the vector space of all Hilbert-Schmidt quadratic operators Q on H becomes a linear H*-algebra containing an ideal of nuclear (trace class) quadratic operators. In the finite dimensional case, each Q is also shown to have another representation as a block-diagonal matrix of Hilbert-Schmidt class which simplifies the practical computation and manipulation of quadratic operators.


2012 ◽  
Vol 62 (1) ◽  
Author(s):  
Kallol Paul ◽  
Gopal Das

AbstractWe consider the notion of real center of mass and total center of mass of a bounded linear operator relative to another bounded linear operator and explore their relation with cosine and total cosine of a bounded linear operator acting on a complex Hilbert space. We give another proof of the Min-max equality and then generalize it using the notion of orthogonality of bounded linear operators. We also illustrate with examples an alternative method of calculating the antieigenvalues and total antieigenvalues for finite dimensional operators.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Julián López-Gómez ◽  
Juan Carlos Sampedro

Abstract This paper generalizes the classical theory of perturbation of eigenvalues up to cover the most general setting where the operator surface 𝔏 : [ a , b ] × [ c , d ] → Φ 0 ⁢ ( U , V ) {\mathfrak{L}:[a,b]\times[c,d]\to\Phi_{0}(U,V)} , ( λ , μ ) ↦ 𝔏 ⁢ ( λ , μ ) {(\lambda,\mu)\mapsto\mathfrak{L}(\lambda,\mu)} , depends continuously on the perturbation parameter, μ, and holomorphically, as well as nonlinearly, on the spectral parameter, λ, where Φ 0 ⁢ ( U , V ) {\Phi_{0}(U,V)} stands for the set of Fredholm operators of index zero between U and V. The main result is a substantial extension of a classical finite-dimensional theorem of T. Kato (see [T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Class. Math., Springer, Berlin, 1995, Chapter 2, Section 5]).


Author(s):  
LUCAS FRESSE ◽  
IVAN PENKOV

AbstractLet G be one of the ind-groups GL(∞), O(∞), Sp(∞), and let P1, ..., Pℓ be an arbitrary set of ℓ splitting parabolic subgroups of G. We determine all such sets with the property that G acts with finitely many orbits on the ind-variety X1 × × Xℓ where Xi = G/Pi. In the case of a finite-dimensional classical linear algebraic group G, the analogous problem has been solved in a sequence of papers of Littelmann, Magyar–Weyman–Zelevinsky and Matsuki. An essential difference from the finite-dimensional case is that already for ℓ = 2, the condition that G acts on X1 × X2 with finitely many orbits is a rather restrictive condition on the pair P1, P2. We describe this condition explicitly. Using the description we tackle the most interesting case where ℓ = 3, and present the answer in the form of a table. For ℓ ≥ 4 there always are infinitely many G-orbits on X1 × × Xℓ.


1990 ◽  
Vol 42 (2) ◽  
pp. 253-266 ◽  
Author(s):  
Jia-Ding Cao ◽  
Heinz H. Gonska

In the present note we study the question: “Under which general conditions do certain Boolean sums of linear operators satisfy Telyakovskiǐ-type estimates?” It is shown, in particular, that any sequence of linear algebraic polynomial operators satisfying a Timan-type inequality can be modified appropriately so as to obtain the corresponding upper bound of the Telyakovskiǐ-type. Several examples are included.


Sign in / Sign up

Export Citation Format

Share Document