On the existence of solitary waves in rotating fluids

1995 ◽  
Vol 125 (5) ◽  
pp. 1105-1129
Author(s):  
S. M. Sun

This paper considers the existence of axisymmetric solitary waves in an inviscid and incompressible rotating fluid bounded by a rigid cylinder. It has been obtained by many experiments and formal derivations that this flow has internal solitary waves in the fluid when equilibrium state at infinity satisfies certain conditions. This paper gives a rigorous proof of the existence of solitary wave solutions for the exact equations governing the flow under such conditions at infinity, and shows that the first-order approximations of the solitary wave solutions for the exact equations are solitary wave solutions derived formally using long-wave approximation. The ideas in the proof of the existence of solitary waves in two-dimensional stratified fluids are used and a main difficulty from the singularity at axis of rotation is overcome.

Author(s):  
João-Paulo Dias ◽  
Mário Figueira ◽  
Filipe Oliveira

We prove the existence of solitary wave solutions to the quasilinear Benney systemwhere , –1 < p < +∞ and a, γ > 0. We establish, in particular, the existence of travelling waves with speed arbitrarily large if p < 0 and arbitrarily close to 0 if . We also show the existence of standing waves in the case , with compact support if – 1 < p < 0. Finally, we obtain, under certain conditions, the linearized stability of such solutions.


Author(s):  
Keiichi Kato ◽  
Patrick-Nicolas Pipolo

In this paper we prove the existence and analyticity of solitary waves of generalized Kadomtsev–Petviashvili equations satisfying a set of conditions on linear and nonlinear terms which determine their behaviour at infinity and around 0.


2018 ◽  
Vol 33 (25) ◽  
pp. 1850145 ◽  
Author(s):  
Abdullah ◽  
Aly R. Seadawy ◽  
Jun Wang

Propagation of three-dimensional nonlinear solitary waves in a magnetized electron–positron plasma is analyzed. Modified extended mapping method is further modified and applied to three-dimensional nonlinear modified Zakharov–Kuznetsov equation to find traveling solitary wave solutions. As a result, electrostatic field potential, electric field, magnetic field and quantum statistical pressure are obtained with the aid of Mathematica. The new exact solitary wave solutions are obtained in different forms such as periodic, kink and anti-kink, dark soliton, bright soliton, bright and dark solitary waves, etc. The results are expressed in the forms of trigonometric, hyperbolic, rational and exponential functions. The electrostatic field potential and electric and magnetic fields are shown graphically. The soliton stability of these solitary wave solutions is analyzed. These results demonstrate the efficiency and precision of the method that can be applied to many other mathematical physical problems.


2014 ◽  
Vol 6 (2) ◽  
pp. 273-284 ◽  
Author(s):  
K. Khan ◽  
M. A. Akbar

In this article, the modified simple equation (MSE) method has been executed to find the traveling wave solutions of the coupled (1+1)-dimensional Broer-Kaup (BK) equations and the dispersive long wave (DLW) equations. The efficiency of the method for finding exact solutions has been demonstrated. It has been shown that the method is direct, effective and can be used for many other nonlinear evolution equations (NLEEs) in mathematical physics. Moreover, this procedure reduces the large volume of calculations.  Keywords: MSE method; NLEE; BK equations; DLW equations; Solitary wave solutions. © 2014 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: http://dx.doi.org/10.3329/jsr.v6i2.16671 J. Sci. Res. 6 (2), 273-284 (2014)  


2018 ◽  
Vol 23 (6) ◽  
pp. 942-950 ◽  
Author(s):  
Anjan Biswasa ◽  
Mehmet Ekici ◽  
Abdullah Sonmezoglu

This paper discusses shallow water waves that is modeled with Boussinesq equation that comes with dual dispersion and logarithmic nonlinearity. The extended trial function scheme retrieves exact Gaussian solitary wave solutions to the model.


2021 ◽  
Vol 21 (1) ◽  
pp. 91-104
Author(s):  
MAHA S.M. SHEHATA ◽  
HADI REZAZADEH ◽  
EMAD H.M. ZAHRAN ◽  
MOSTAFA ESLAMI ◽  
AHMET BEKIR

In this paper, new exact traveling wave solutions for the coupling Boiti-Leon-Pempinelli system are obtained by using two important different methods. The first is the modified extended tanh function methods which depend on the balance rule and the second is the Ricatti-Bernoulli Sub-ODE method which doesn’t depend on the balance rule. The solitary waves solutions can be derived from the exact wave solutions by give the parameters a special value. The consistent and inconsistent of the obtained solutions are studied not only between these two methods but also with that relisted by the other methods.


Filomat ◽  
2018 ◽  
Vol 32 (14) ◽  
pp. 4959-4969 ◽  
Author(s):  
Wei-Qi Peng ◽  
Shou-Fu Tian ◽  
Tian-Tian Zhang

In this paper, we consider a generalized (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera- Sawada (CDGKS) equation. By using the Bell polynomial, we derive its bilinear form. Based on the homoclinic breather limit method, we construct the homoclinic breather wave and the rational rogue wave solutions of the equation. Then by using its bilinear form, some solitary wave solutions of the CDGKS equation are provided by a very natural way. Moreover, some prominent characteristics for the dynamic behaviors of these solitons are analyzed by several graphics. Our results show that the breather wave can be transformed into rogue wave under the extreme behavior.


Sign in / Sign up

Export Citation Format

Share Document