Focusing blow-up for quasilinear parabolic equations

Author(s):  
C. J. Budd ◽  
V. A. Galaktionov ◽  
Jianping Chen

We study the behaviour of the non-negative blowing up solutions to the quasilinear parabolic equation with a typical reaction–diffusion right-hand side and with a singularity in the space variable which takes the formwhere m ≧ 1, p > 1 are arbitrary constants, in the critical exponent case q = (p–1)/m > 0. We impose zero Dirichlet boundary conditions at the singular point x = 0 and at x = 1, and take large initial data. For a class of ‘concave’ initial functions, we prove focusing at the origin of the solutions as t approaches the blow-up time T in the sense that x = 0 belongs to the blow-up set. The proof is based on an application of the intersection comparison method with an explicit ‘separable’ solution which has the same blow-up time as u. The method has a natural generalisation to the case of more general nonlinearities in the equation. A description of different fine structures of blow-up patterns in the semilinear case m = 1 and in the quasilinear one m > 1 is also presented. A numerical study of the semilinear equation is also made using an adaptive collocation method. This is shown to give very close agreement with the fine structure predicted and allows us to make some conjectures about the general behaviour.

2020 ◽  
Vol 17 (2) ◽  
pp. 278-295
Author(s):  
Yevgeniia Yevgenieva

We study the quasilinear parabolic equation $(|u|^{q-1}u)_t-\Delta_p\,u=0$ in a multidimensional domain $(0,T)\times\Omega$ under the condition $u(t,x)=f(t,x)$ on $(0,T)\times\partial\Omega$, where the boundary function $f$ blows-up at a finite time $T$, i.e., $f(t,x)\rightarrow\infty$ as $t\rightarrow T$. For $p\geqslant q>0$ and the boundary function $f$ with power-like behavior, the upper bounds of weak solutions of the problem are obtained. The behavior of solutions at the transition from the case where $p>q$ to $p=q$ is investigated. A general approach within the method of energy estimates to such problems is described.


Author(s):  
Ryuichi Suzuki ◽  
Noriaki Umeda

We consider non-negative solutions of the Cauchy problem for quasilinear parabolic equations ut = Δum + f(u), where m > 1 and f(ξ) is a positive function in ξ > 0 satisfying f(0) = 0 and a blow-up conditionWe show that if ξm+2/N /(−log ξ)β = O(f(ξ)) as ξ ↓ 0 for some 0 < β < 2/(mN + 2), one of the following holds: (i) all non-trivial solutions blow up in finite time; (ii) every non-trivial solution with an initial datum u0 having compact support exists globally in time and grows up to ∞ as t → ∞: limtt→∞ inf|x|<Ru(x, t) = ∞ for any R > 0. Moreover, we give a condition on f such that (i) holds, and show the existence of f such that (ii) holds.


1997 ◽  
Vol 2 (3-4) ◽  
pp. 257-270 ◽  
Author(s):  
Siegfried Carl

In this paper we consider a quasilinear parabolic equation in a bounded domain under periodic Dirichlet boundary conditions. Our main goal is to prove the existence of extremal solutions among all solutions lying in a sector formed by appropriately defined upper and lower solutions. The main tools used in the proof of our result are recently obtained abstract results on nonlinear evolution equations, comparison and truncation techniques and suitably constructed special testfunction.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Yuanfei Li ◽  
Lianhong Guo ◽  
Peng Zeng

Abstract The aim of this paper is to show some applications of Sobolev inequalities in partial differential equations. With the aid of some well-known inequalities, we derive the existence of global solution for the quasilinear parabolic equations. When the blow-up occurs, we derive the lower bound of the blow-up solution.


2003 ◽  
Vol 133 (5) ◽  
pp. 1075-1119 ◽  
Author(s):  
V. A. Galaktionov ◽  
A. E. Shishkov

We prove localization estimates for general 2mth-order quasilinear parabolic equations with boundary data blowing up in finite time, as t → T−. The analysis is based on energy estimates obtained from a system of functional inequalities expressing a version of Saint-Venant's principle from the theory of elasticity. We consider a special class of parabolic operators including those having fixed orders of algebraic homogenuity p > 0. This class includes the second-order heat equation and linear 2mth-order parabolic equations (p = 1), as well as many other higher-order quasilinear ones with p ≠ 1. Such homogeneous equations can be invariant under a group of scaling transformations, but the corresponding least-localized regional blow-up regimes are not group invariant and exhibit typical exponential singularities ~ e(T−t)−γ → ∞ as t → T−, with the optimal constant γ = 1/[m(p + 1) − 1] > 0. For some particular equations, we study the asymptotic blow-up behaviour described by perturbed first-order Hamilton–Jacobi equations, which shows that general estimates of exponential type are sharp.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Zhong Bo Fang ◽  
Yan Chai

We investigate an initial-boundary value problem for a quasilinear parabolic equation with inner absorption and nonlinear Neumann boundary condition. We establish, respectively, the conditions on nonlinearity to guarantee thatu(x,t)exists globally or blows up at some finite timet*. Moreover, an upper bound fort*is derived. Under somewhat more restrictive conditions, a lower bound fort*is also obtained.


2002 ◽  
Vol 7 (2) ◽  
pp. 207-216
Author(s):  
N. V. Dzenisenko ◽  
A. P. Matus ◽  
P. P. Matus

In order to approximate a multidimensional quasilinear parabolic equation with unlimited nonlinearity the economical vector‐additive scheme is constructed. It is shown that its solution satisfies the maximum principle and, hence, the scheme is monotone. The proof is based on the equivalence of the vector‐additive scheme and the scheme of summarized approximation (locally one‐dimensional scheme). The a priori estimates of the difference solution in the uniform norm are obtained.


Sign in / Sign up

Export Citation Format

Share Document