Saint-Venant's principle in blow-up for higher-order quasilinear parabolic equations

2003 ◽  
Vol 133 (5) ◽  
pp. 1075-1119 ◽  
Author(s):  
V. A. Galaktionov ◽  
A. E. Shishkov

We prove localization estimates for general 2mth-order quasilinear parabolic equations with boundary data blowing up in finite time, as t → T−. The analysis is based on energy estimates obtained from a system of functional inequalities expressing a version of Saint-Venant's principle from the theory of elasticity. We consider a special class of parabolic operators including those having fixed orders of algebraic homogenuity p > 0. This class includes the second-order heat equation and linear 2mth-order parabolic equations (p = 1), as well as many other higher-order quasilinear ones with p ≠ 1. Such homogeneous equations can be invariant under a group of scaling transformations, but the corresponding least-localized regional blow-up regimes are not group invariant and exhibit typical exponential singularities ~ e(T−t)−γ → ∞ as t → T−, with the optimal constant γ = 1/[m(p + 1) − 1] > 0. For some particular equations, we study the asymptotic blow-up behaviour described by perturbed first-order Hamilton–Jacobi equations, which shows that general estimates of exponential type are sharp.

2020 ◽  
Vol 17 (2) ◽  
pp. 278-295
Author(s):  
Yevgeniia Yevgenieva

We study the quasilinear parabolic equation $(|u|^{q-1}u)_t-\Delta_p\,u=0$ in a multidimensional domain $(0,T)\times\Omega$ under the condition $u(t,x)=f(t,x)$ on $(0,T)\times\partial\Omega$, where the boundary function $f$ blows-up at a finite time $T$, i.e., $f(t,x)\rightarrow\infty$ as $t\rightarrow T$. For $p\geqslant q>0$ and the boundary function $f$ with power-like behavior, the upper bounds of weak solutions of the problem are obtained. The behavior of solutions at the transition from the case where $p>q$ to $p=q$ is investigated. A general approach within the method of energy estimates to such problems is described.


2005 ◽  
Vol 135 (6) ◽  
pp. 1195-1227 ◽  
Author(s):  
V. A. Galaktionov ◽  
A. E. Shishkov

We study evolution properties of boundary blow-up for 2mth-order quasilinear parabolic equations in the case where, for homogeneous power nonlinearities, the typical asymptotic behaviour is described by exact or approximate self-similar solutions. Existence and asymptotic stability of such similarity solutions are established by energy estimates and contractivity properties of the rescaled flows.Further asymptotic results are proved for more general equations by using energy estimates related to Saint-Venant's principle. The established estimates of propagation of singularities generated by boundary blow-up regimes are shown to be sharp by comparing with various self-similar patterns.


Author(s):  
C. J. Budd ◽  
V. A. Galaktionov ◽  
Jianping Chen

We study the behaviour of the non-negative blowing up solutions to the quasilinear parabolic equation with a typical reaction–diffusion right-hand side and with a singularity in the space variable which takes the formwhere m ≧ 1, p > 1 are arbitrary constants, in the critical exponent case q = (p–1)/m > 0. We impose zero Dirichlet boundary conditions at the singular point x = 0 and at x = 1, and take large initial data. For a class of ‘concave’ initial functions, we prove focusing at the origin of the solutions as t approaches the blow-up time T in the sense that x = 0 belongs to the blow-up set. The proof is based on an application of the intersection comparison method with an explicit ‘separable’ solution which has the same blow-up time as u. The method has a natural generalisation to the case of more general nonlinearities in the equation. A description of different fine structures of blow-up patterns in the semilinear case m = 1 and in the quasilinear one m > 1 is also presented. A numerical study of the semilinear equation is also made using an adaptive collocation method. This is shown to give very close agreement with the fine structure predicted and allows us to make some conjectures about the general behaviour.


Sign in / Sign up

Export Citation Format

Share Document