Dynamics of a non-local delayed reaction–diffusion equation without quasi-monotonicity

2010 ◽  
Vol 140 (5) ◽  
pp. 1081-1109 ◽  
Author(s):  
Zhi-Cheng Wang ◽  
Wan-Tong Li

AbstractThis paper is concerned with the dynamics of a non-local delayed reaction–diffusion equation without quasi-monotonicity on an infinite n-dimensional domain, which can be derived from the growth of a stage-structured single-species population. We first prove that solutions of the Cauchy-type problem are positively preserving and bounded if the initial value is non-negative and bounded. Then, by establishing a comparison theorem and a series of comparison arguments, we prove the global attractivity of the positive equilibrium. When there exist no positive equilibria, we prove that the zero equilibrium is globally attractive. In particular, these results are still valid for the non-local delayed reaction–diffusion equation on a bounded domain with the Neumann boundary condition. Finally, we establish the existence of new entire solutions by using the travelling-wave solutions of two auxiliary equations and the global attractivity of the positive equilibrium.

2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Tianlong Shen ◽  
Jianhua Huang ◽  
Jin Li

The current paper is devoted to the regularity of the mild solution for a stochastic fractional delayed reaction-diffusion equation driven by Lévy space-time white noise. By the Banach fixed point theorem, the existence and uniqueness of the mild solution are proved in the proper working function space which is affected by the delays. Furthermore, the time regularity and space regularity of the mild solution are established respectively. The main results show that both time regularity and space regularity of the mild solution depend on the regularity of initial value and the order of fractional operator. In particular, the time regularity is affected by the regularity of initial value with delays.


Author(s):  
L. H. Erbe ◽  
H. I. Freedman ◽  
X. Z. Liu ◽  
J. H. Wu

AbstractThis paper establishes some maximum and comparison principles relative to lower and upper solutions of nonlinear parabolic partial differential equations with impulsive effects. These principles are applied to obtain some sufficient conditions for the global asymptotic stability of a unique positive equilibrium in a reaction-diffusion equation modeling the growth of a single-species population subject to abrupt changes of certain important system parameters.


Sign in / Sign up

Export Citation Format

Share Document