STABILITY OF STATIONARY SOLUTIONS FOR A SCALAR NON-LOCAL REACTION-DIFFUSION EQUATION

1995 ◽  
Vol 48 (4) ◽  
pp. 557-582 ◽  
Author(s):  
PEDRO FRETTAS
Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1999
Author(s):  
Hongpeng Guo ◽  
Zhiming Guo

This paper deals with the existence of traveling wave solutions to a delayed temporally discrete non-local reaction diffusion equation model, which has been derived recently for a single species with age structure. When the birth function satisfies monotonic condition, we obtained the traveling wavefront by using upper and lower solution methods together with monotonic iteration techniques. Otherwise, without the monotonicity assumption for birth function, we constructed two auxiliary equations. By means of the traveling wavefronts of the auxiliary equations, using the Schauder’ fixed point theorem, we proved the existence of a traveling wave solution to the equation under consideration with speed c>c*, where c*>0 is some constant. We found that the delayed temporally discrete non-local reaction diffusion equation possesses the dynamical consistency with its time continuous counterpart at least in the sense of the existence of traveling wave solutions.


2010 ◽  
Vol 140 (5) ◽  
pp. 1081-1109 ◽  
Author(s):  
Zhi-Cheng Wang ◽  
Wan-Tong Li

AbstractThis paper is concerned with the dynamics of a non-local delayed reaction–diffusion equation without quasi-monotonicity on an infinite n-dimensional domain, which can be derived from the growth of a stage-structured single-species population. We first prove that solutions of the Cauchy-type problem are positively preserving and bounded if the initial value is non-negative and bounded. Then, by establishing a comparison theorem and a series of comparison arguments, we prove the global attractivity of the positive equilibrium. When there exist no positive equilibria, we prove that the zero equilibrium is globally attractive. In particular, these results are still valid for the non-local delayed reaction–diffusion equation on a bounded domain with the Neumann boundary condition. Finally, we establish the existence of new entire solutions by using the travelling-wave solutions of two auxiliary equations and the global attractivity of the positive equilibrium.


In this paper, we prove the global existence and non-existence of solutions of the following problem: RDC{ u t = u xx + u 2 - ∫ u 2 ( x ) d x , x ϵ (0, 1), t > 0, u x (0, t ) = u x (1, t ) = t > 0, u ( x , 0) = u 0 ( x ), x ϵ (0, 1), ∫ 1 0 u ( x, t ) d x = 0, t > 0, Moreover, let u m ( x ) be a stationary solution of problem RDC with m zeros in the interval (0, 1) for m ϵ N , and if we take u 0 ( x ). Then we have that the solution exists globally if 0 < ϵ < 1, and blows up in finite time if ϵ > 1. This result verifies the numerical results of Budd et al . (1993, SIAM Jl appl. Math . 53, 718-742) that the non-zero stationary solutions are unstable.


Sign in / Sign up

Export Citation Format

Share Document