Homotopy commutativity in p-localized gauge groups

Author(s):  
D. Kishimoto ◽  
A. Kono ◽  
S. Theriault

Let G be a simple, compact Lie group and let $\mathcal{G}_k(G)$ be the gauge group of the principal G-bundle over S4 with second Chern class k. McGibbon classified the groups G that are homotopy commutative when localized at a prime p. We show that in many cases the homotopy commutativity of G, or its failure, determines that of $\mathcal{G}_k(G)$.

2018 ◽  
Vol 61 (2) ◽  
pp. 349-371 ◽  
Author(s):  
TSELEUNG SO

AbstractLet G be a simple, simply connected, compact Lie group, and let M be an orientable, smooth, connected, closed 4-manifold. In this paper, we calculate the homotopy type of the suspension of M and the homotopy types of the gauge groups of principal G-bundles over M when π1(M) is (1) ℤ*m, (2) ℤ/prℤ, or (3) ℤ*m*(*nj=1ℤ/prjjℤ), where p and the pj's are odd primes.


Author(s):  
YOSHIHITO SHIMADA

We consider the energy representation for the gauge group. The gauge group is the set of C∞-mappings from a compact Riemannian manifold to a semi-simple compact Lie group. In this paper, we obtain irreducibility of the energy representation of the gauge group for any dimension of M. To prove irreducibility for the energy representation, we use the fact that each operator from a space of test functionals to a space of generalized functionals is realized as a series of integral kernel operators, called the Fock expansion.


2020 ◽  
Vol 32 (2) ◽  
pp. 479-489
Author(s):  
Alexander Schmeding

AbstractIn this note we construct an infinite-dimensional Lie group structure on the group of vertical bisections of a regular Lie groupoid. We then identify the Lie algebra of this group and discuss regularity properties (in the sense of Milnor) for these Lie groups. If the groupoid is locally trivial, i.e., a gauge groupoid, the vertical bisections coincide with the gauge group of the underlying bundle. Hence, the construction recovers the well-known Lie group structure of the gauge groups. To establish the Lie theoretic properties of the vertical bisections of a Lie groupoid over a non-compact base, we need to generalise the Lie theoretic treatment of Lie groups of bisections for Lie groupoids over non-compact bases.


2021 ◽  
pp. 1-29
Author(s):  
DREW HEARD

Abstract Greenlees has conjectured that the rational stable equivariant homotopy category of a compact Lie group always has an algebraic model. Based on this idea, we show that the category of rational local systems on a connected finite loop space always has a simple algebraic model. When the loop space arises from a connected compact Lie group, this recovers a special case of a result of Pol and Williamson about rational cofree G-spectra. More generally, we show that if K is a closed subgroup of a compact Lie group G such that the Weyl group W G K is connected, then a certain category of rational G-spectra “at K” has an algebraic model. For example, when K is the trivial group, this is just the category of rational cofree G-spectra, and this recovers the aforementioned result. Throughout, we pay careful attention to the role of torsion and complete categories.


1977 ◽  
Vol 16 (2) ◽  
pp. 279-295 ◽  
Author(s):  
M.J. Field

Let G be a compact Lie group and V and W be linear G spaces. A study is made of the canonical stratification of some algebraic varieties that arise naturally in the theory of C∞ equivariant maps from V to W. The main corollary of our results is the equivalence of Bierstone's concept of “equivariant general position” with our own of “G transversal”. The paper concludes with a description of Bierstone's higher order conditions for equivariant maps in the framework of equisingularity sequences.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 284
Author(s):  
Ali Çakmak

The authors wish to make the following corrections to their paper [...]


Author(s):  
Francis Clarke

Let G be a simply connected, semi-simple, compact Lie group, let K* denote Z/2-graded, representable K-theory, and K* the corresponding homology theory. The K-theory of G and of its classifying space BG are well known, (8),(1). In contrast with ordinary cohomology, K*(G) and K*(BG) are torsion-free and have simple multiplicative structures. If ΩG denotes the space of loops on G, it seems natural to conjecture that K*(ΩG) should have, in some sense, a more simple structure than H*(ΩG).


Sign in / Sign up

Export Citation Format

Share Document