scholarly journals Antagonism by Taurine of Morphine Induced Growth Hormone Secretion

Author(s):  
R. Collu ◽  
G. Charpenet ◽  
M. J. Clermont

SUMMARY:The intraperitoneal (IP) or intraventricular (IVT) administration of small amounts of taurine did not modify pentobarbital-induced sleep or pituitary hormone release. However, the drastic increment in plasma GH values induced by morphine administration was completely blocked by the IVT injection of the amino acid. Whether taurine plays a physiological role in the control ofGH secretion is highly speculative.

1995 ◽  
Vol 144 (1) ◽  
pp. 83-90 ◽  
Author(s):  
E Magnan ◽  
L Mazzocchi ◽  
M Cataldi ◽  
V Guillaume ◽  
A Dutour ◽  
...  

Abstract The physiological role of endogenous circulating GHreleasing hormone (GHRH) and somatostatin (SRIH) on spontaneous pulsatile and neostigmine-induced secretion of GH was investigated in adult rams actively immunized against each neuropeptide. All animals developed antibodies at concentrations sufficient for immunoneutralization of GHRH and SRIH levels in hypophysial portal blood. In the anti GHRH group, plasma GH levels were very low; the amplitude of GH pulses was strikingly reduced, although their number was unchanged. No stimulation of GH release was observed after neostigmine administration. The reduction of GH secretion was associated with a decreased body weight and a significant reduction in plasma IGF-I concentration. In the antiSRIH group, no changes in basal and pulsatile GH secretion or the GH response to neostigmine were observed as compared to controls. Body weight was not significantly altered and plasma IGF-I levels were reduced in these animals. These results suggest that in sheep, circulating SRIH (in the systemic and hypophysial portal vasculature) does not play a significant role in pulsatile and neostigmine-induced secretion of GH. The mechanisms of its influence on body weight and production of IGF-I remain to be determined. Journal of Endocrinology (1995) 144, 83–90


1989 ◽  
Vol 256 (2) ◽  
pp. E221-E226 ◽  
Author(s):  
G. D. Snyder ◽  
P. Yadagiri ◽  
J. R. Falck

Growth hormone secretion was stimulated in vitro by products of arachidonic acid epoxygenase, the epoxyeicosatrienoic acids. 5,6-Epoxyeicosatrienoic and 14,15-epoxyeicosatrienoic acid stimulated growth hormone release from an enriched population of somatotrophs (approximately 85%) by twofold. Inhibition of arachidonic acid metabolism by indomethacin did not affect growth hormone-releasing hormone stimulation of growth hormone release. In contrast, pretreatment of somatotrophs with an 11,12-isonitrile analogue of arachidonic acid that inhibits arachidonic acid epoxygenase, resulted in a 20-25% inhibition of growth hormone-releasing hormone-stimulated growth hormone release. 14,15-Epoxyeicosatrienoic acid stimulated a concentration-dependent increase (twofold) in the cytoplasmic concentration of adenosine 3',5'-cyclic monophosphate (cAMP) in the somatotrophs. 14,15-Epoxyeicosatrienoic acid also rapidly increased the intracellular free calcium concentration in somatotrophs from resting levels (approximately 80 nM) to greater than 250 nM. Growth hormone-releasing hormone increased the free intracellular calcium to 160-180 nM. Preincubation of somatotrophs with somatostatin inhibited growth hormone-releasing hormone-stimulated growth hormone secretion, cAMP accumulation, and 14,15-epoxyeicosatrienoic acid stimulated cAMP accumulation. These data are suggestive that the epoxyeicosatrienoic acids may have a role in the secretion of growth hormone.


1987 ◽  
Vol 253 (4) ◽  
pp. E354-E359
Author(s):  
K. Ishikawa ◽  
H. Katakami ◽  
L. A. Frohman

The inhibitory effect of centrally administered thyrotropin-releasing hormone (TRH) on the plasma growth hormone (GH) response to GH-releasing hormone (GHRH) in the rat was studied in relation to the anatomic loci involved. Experiments were performed in animals with bilateral electrolytic lesions in the medial preoptic (MPO) area or with anterolateral hypothalamic deafferentation and in sham-operated controls. Blood samples were obtained every 10 to 20 min from and drugs were injected into freely moving animals with indwelling cannulas in the right atrium and lateral cerebral ventricle. In control animals, the plasma GH response to GHRH, 1 microgram iv, was almost completely inhibited by TRH, 1 microgram icv, injected 5 min previously. In animals with either MPO lesions or anterolateral hypothalamic deafferentation in which median eminence somatostatin immunochemical staining was almost completely eliminated, the GH response to GHRH was enhanced and TRH did not exhibit any inhibitory effect. These results, together with the previous observation that the inhibitory effect of TRH is blocked by prior treatment with anti-somatostatin serum, suggest that the effect of TRH is mediated by stimulation of somatostatin-containing neurons in the periventricular nucleus of the MPO area.


Diabetes ◽  
1975 ◽  
Vol 24 (9) ◽  
pp. 842-850 ◽  
Author(s):  
D. Bryce ◽  
M. Yeh ◽  
C. Funderburk ◽  
H. Todd ◽  
F. Hertelendy

1971 ◽  
Vol 124 (4) ◽  
pp. 815-826 ◽  
Author(s):  
R. B. Lockhart Ewart ◽  
K. W. Taylor

1. The release of growth hormone from isolated fragments of rat anterior pituitary tissue incubated in vitro was studied by employing a double-antibody radioimmunoassay. 2. In the absence of added stimuli, two phases of hormone release could be distinguished, an early phase of 2h duration and a subsequent late phase. In the early phase, hormone release was rapid but could be significantly decreased by calcium depletion and by 2,4-dinitrophenol whereas the rate of release in the late phase was uninfluenced by these incubation conditions. These results have been interpreted as indicating the existence of a secretory component in the early phase of release. 3. In subsequent experiments, the effects of various agents on the rate of hormone output during the late phase of incubation were investigated. Hormone release was increased by theophylline and by dibutyryl cyclic AMP (N6-2′-O-dibutyryl-adenosine 3′:5′-cyclic monophosphate), the response to both of these agents being related to the concentration of the stimulant employed. 4. The stimulation of growth hormone output by theophylline was significantly decreased by calcium deprivation and by 2,4-dinitrophenol. The response to dibutyryl cyclic AMP was diminished by 2,4-dinitrophenol, iodoacetate and 2-deoxyglucose but not by malonate or colchicine. 5. Arginine, β-hydroxybutyrate, albumin-bound palmitate and variation in the glucose concentration of the incubation medium over a wide range were without any statistically significant effect on the rate of hormone release from either control pituitary fragments or those subject to secretory stimulation by dibutyryl cyclic AMP. 6. It is suggested that the regulation of growth hormone secretion is mediated by cyclic AMP (adenosine 3′:5′-cyclic monophosphate). The secretion observed in response to cyclic AMP requires the presence of ionized calcium and a source of metabolic energy but is independent of pituitary protein synthesis de novo. The integrity of the glycolytic pathway of glucose metabolism appears to be essential for cyclic AMP-stimulated growth hormone secretion to occur.


2009 ◽  
Vol 52 (1) ◽  
pp. 79-84 ◽  
Author(s):  
F. G. Colinet ◽  
D. Portetelle ◽  
R. Renaville

Abstract. Bovine ghrelin, a 27 amino acid peptide, has been identified in oxyntic glands of the abomasum. It is an endogenous ligand for growth hormone secretagogue receptor and stimulates food intake and growth hormone secretion. The bovine GHRL gene was completely sequenced and consists of five exons and four introns. Like mouse and human GHRL genes, we found that the bovine GHRL gene also contains a first non-coding exon of 21 bp. The bovine GHRL gene codes for 116 amino acid peptide named preproghrelin which contains the ghrelin peptide and another peptide similar to obestatin. Sequence analysis revealed eight polymorphisms, which are located in the non-coding sequence of the gene.


1986 ◽  
Vol 111 (1) ◽  
pp. 91-97 ◽  
Author(s):  
S. Harvey ◽  
S.-K. Lam ◽  
T. R. Hall

ABSTRACT Passive immunization of immature chickens with sheep somatostatin (SRIF) antiserum promptly increased the basal plasma GH concentration and augmented TRH-induced GH secretion. Although exogenous SRIF had no inhibitory effect on the basal GH concentration in untreated birds or birds pretreated with non-immune sheep serum, it suppressed the stimulatory effect of SRIF immunoneutralization on GH secretion. These results suggest that SRIF is physiologically involved in the control of GH secretion in birds, in which it appears to inhibit GH release tonically. J. Endocr. (1986) 111, 91–97


1987 ◽  
Vol 65 (4) ◽  
pp. 515-519 ◽  
Author(s):  
M. S. Sheppard ◽  
R. M. Bala

Growth hormone secretion is controlled by the two hypothalamic hormones, growth hormone releasing factor (GRF) and somatostatin. In addition, the insulin-like growth factors (IGF or somatomedins) which are themselves growth hormone dependent, inhibit growth hormone release in vitro, therefore acting to close the negative feedback loop. The studies reported here examine some of the differences between inhibition of growth hormone secretion by somatostatin and IGF-I in vitro. The major finding is that cycloheximide, a protein synthesis inhibitor, blocks inhibition of GRF-stimulated growth hormone release caused by IGF-I, without changing the inhibition caused by somatostatin. The experiments were done by exposing mixed rat adenohypophysial cells to secretagogues with or without cycloheximide for 24 h in a short term culture. Somatostatin (0.6 nM) totally blocked rat GRF (1 nM) stimulated growth hormone release to values 48% of control (nonstimulated values), while IGF-1 (27 nM) only reduced the GRF-stimulated growth hormone release by 27 ± 3% (N = 5). Cycloheximide (15 μg/mL) totally blocked the effect of IGF-I but not somatostatin. A low concentration (0.12 nM) of somatostatin, which only partly inhibited growth hormone release, was also unaffected by cycloheximide. In purified rat somatotrophs, somatostatin (0.1 nM) inhibited GRF-stimulated cAMP levels slightly and reduced growth hormone release while IGF-I (40 nM) had no effect. We suggest that IGF-I inhibits only the secretion of newly synthesized growth hormone, while somatostatin inhibits both stored and newly synthesized growth hormone pools.


Sign in / Sign up

Export Citation Format

Share Document