scholarly journals Oculomotor Abnormalities in Friedreich's Ataxia

Author(s):  
T.H. Kirkham ◽  
D. Guitton ◽  
A. Katsarkas ◽  
L.B. Kline ◽  
E. Andermann

SummaryA clinical neuro-opthalmo-logical and electro-oculographic study was made on fourteen patients with Friedreich's ataxia. None had evidence of optic nerve dysfunction. No patient complained of oscillopsia although all had ocular motor deficits of varying degrees, which appeared to be related to the severity of the general manifestations of the disease. The defects comprised square wave jerks, jerky pursuit with inability to maintain eccentric gaze resulting in gaze paretic nystagmus and rebound nystagmus. There was failure to suppress by fixation the vestíbulo-ocular reflex. The slow phase velocity of caloric nystagmus was always of reduced velocity. There was inability to augment the slow phase velocity of optokinetic nystagmus with increasing stimulus velocity. Abnormalities of the saccadic system were manifest particularly as hypermetria. These signs in combination are suggestive of disease involving the cere be I lar flocculus and vermis or their brain stem connections. No abnormalities were found in 17 parents or siblings.

2003 ◽  
Vol 13 (4-6) ◽  
pp. 255-263
Author(s):  
Gilles Clément

Prolonged microgravity during orbital flight is a unique way to modify the otolith inputs and to determine the extent of their contribution to the vertical vestibulo-ocular reflex (VOR) and optokinetic nystagmus (OKN). This paper reviews the data collected on 10 astronauts during several space missions and focuses on the changes in the up-down asymmetry. Both the OKN elicited by vertical visual stimulation and the active VOR elicited by voluntary pitch head movements showed an asymmetry before flight, with upward slow phase velocity higher than downward slow phase velocity. Early in-flight, this asymmetry was inverted, and a symmetry of both responses was later observed. An upward shift in the vertical mean eye position in both OKN and VOR suggests that these effects may be related to otolith-dependent changes in eye position which, in themselves, affect slow phase eye velocity.


Neurology ◽  
2020 ◽  
Vol 95 (17) ◽  
pp. e2409-e2417
Author(s):  
Sun-Uk Lee ◽  
Hyo-Jung Kim ◽  
Jeong-Yoon Choi ◽  
Ji-Soo Kim

ObjectiveTo determine the mechanism of ictal downbeat nystagmus in Ménière disease (MD), we compared the head impulse gain of the vestibulo-ocular reflex (VOR) for each semicircular canal between patients with (n = 7) and without (n = 70) downbeat nystagmus during attacks of MD.MethodsWe retrospectively analyzed the results of video-oculography, video head-impulse tests, and cervical vestibular-evoked myogenic potentials (VEMPs) in 77 patients with definite MD who were evaluated during an attack.ResultsPure or predominant downbeat nystagmus was observed in 7 patients (9%) with unilateral MD during the attacks. All 7 patients showed spontaneous downbeat nystagmus without visual fixation with a slow phase velocity ranging from 1.5 to 11.2°/s (median 5.4, interquartile range 3.7–8.5). All showed a transient decrease of the head impulse VOR gains for the posterior canals (PCs) in both ears (n = 4) or in the affected ear (n = 3). Cervical VEMPs were decreased in the affected (n = 2) or both ears (n = 2) when evaluated during the attacks. Downbeat nystagmus disappeared along with normalization of the VOR gains for PCs after the attacks in all patients. During the attacks, the head impulse VOR gains for the PC on the affected side were lower in the patients with ictal downbeat nystagmus than in those without (Mann-Whitney U test, p < 0.001), while the gains for other semicircular canals did not differ between the groups.ConclusionDownbeat nystagmus may be observed during attacks of MD due to an asymmetry in the vertical VOR or saccular dysfunction. MD should be considered in recurrent audiovestibulopathy and ictal downbeat nystagmus.


2008 ◽  
Vol 100 (1) ◽  
pp. 154-159 ◽  
Author(s):  
Benjamin Jeffcoat ◽  
Alexander Shelukhin ◽  
Alex Fong ◽  
William Mustain ◽  
Wu Zhou

Alexander's Law states that the slow-phase velocity of the nystagmus caused by unilateral vestibular lesion increases with gaze in the beat direction. Two studies have shown that this gaze effect is generalized to the nystagmus caused by unilateral cold water irrigation. This indicates that the gaze effect is not the result of central changes associated with a peripheral lesion but rather because of unilateral vestibular peripheral inhibition. In this study, we show that there is a similar gaze effect on the nystagmus produced by unilateral warm water ear irrigation. Furthermore, we examined the two hypotheses of Alexander's Law proposed in the two studies. One hypothesis is based on the gaze-dependent modulation of the vestibulo-ocular reflex (VOR) response to unbalanced canal input. The other hypothesis, however, is based on the leaky neural integrator caused by unilateral vestibular peripheral inhibition. These two hypotheses predict the same gaze effect on the nystagmus produced by cold water irrigation, but opposite gaze effects on the nystagmus produced by warm water irrigation. Our results support the first hypothesis and suggest that the second hypothesis needs to be modified.


2002 ◽  
Vol 88 (2) ◽  
pp. 914-928 ◽  
Author(s):  
Yasuko Arai ◽  
Sergei B. Yakushin ◽  
Bernard Cohen ◽  
Jun-Ichi Suzuki ◽  
Theodore Raphan

We studied caloric nystagmus before and after plugging all six semicircular canals to determine whether velocity storage contributed to the spatial orientation of caloric nystagmus. Monkeys were stimulated unilaterally with cold (≈20°C) water while upright, supine, prone, right-side down, and left-side down. The decline in the slow phase velocity vector was determined over the last 37% of the nystagmus, at a time when the response was largely due to activation of velocity storage. Before plugging, yaw components varied with the convective flow of endolymph in the lateral canals in all head orientations. Plugging blocked endolymph flow, eliminating convection currents. Despite this, caloric nystagmus was readily elicited, but the horizontal component was always toward the stimulated (ipsilateral) side, regardless of head position relative to gravity. When upright, the slow phase velocity vector was close to the yaw and spatial vertical axes. Roll components became stronger in supine and prone positions, and vertical components were enhanced in side down positions. In each case, this brought the velocity vectors toward alignment with the spatial vertical. Consistent with principles governing the orientation of velocity storage, when the yaw component of the velocity vector was positive, the cross-coupled pitch or roll components brought the vector upward in space. Conversely, when yaw eye velocity vector was downward in the head coordinate frame, i.e., negative, pitch and roll were downward in space. The data could not be modeled simply by a reduction in activity in the ipsilateral vestibular nerve, which would direct the velocity vector along the roll direction. Since there is no cross coupling from roll to yaw, velocity storage alone could not rotate the vector to fit the data. We postulated, therefore, that cooling had caused contraction of the endolymph in the plugged canals. This contraction would deflect the cupula toward the plug, simulating ampullofugal flow of endolymph. Inhibition and excitation induced by such cupula deflection fit the data well in the upright position but not in lateral or prone/supine conditions. Data fits in these positions required the addition of a spatially orientated, velocity storage component. We conclude, therefore, that three factors produce cold caloric nystagmus after canal plugging: inhibition of activity in ampullary nerves, contraction of endolymph in the stimulated canals, and orientation of eye velocity to gravity through velocity storage. Although the response to convection currents dominates the normal response to caloric stimulation, velocity storage probably also contributes to the orientation of eye velocity.


1977 ◽  
Vol 86 (1) ◽  
pp. 80-85 ◽  
Author(s):  
Setsuko Takemori

Visual suppression of caloric nystagmus was studied in normal adults and in 98 clinical cases in order to justify the application of the procedure as a clinical test. The maximum slow phase velocity during ten seconds in darkness and the slow phase velocity during ten seconds in light were taken from the recordings and measured. The mean values of these slow phase velocities were calculated and the mean slow phase velocity in darkness was assigned a value of 100%. The value which the slow phase velocity in light subtracts from the slow phase velocity in darkness, represents the visual suppression. It was determined that visual suppression of the slow phase velocity of caloric nystagmus was 48 ± 10% in 22 normal adults. This was caused by the visual fixation mechanisms. Cases in which lesions were diagnosed in the cerebellum, such as spinocerebellar degeneration and cerebellitis, showed reduced or abolished visual suppression. The lesion side can be determined by this test. Compensation following unilateral sudden loss of inner ear function can be measured by the visual suppression test.


2020 ◽  
Vol 29 (2) ◽  
pp. 188-198
Author(s):  
Cynthia G. Fowler ◽  
Margaret Dallapiazza ◽  
Kathleen Talbot Hadsell

Purpose Motion sickness (MS) is a common condition that affects millions of individuals. Although the condition is common and can be debilitating, little research has focused on the vestibular function associated with susceptibility to MS. One causal theory of MS is an asymmetry of vestibular function within or between ears. The purposes of this study, therefore, were (a) to determine if the vestibular system (oculomotor and caloric tests) in videonystagmography (VNG) is associated with susceptibility to MS and (b) to determine if these tests support the theory of an asymmetry between ears associated with MS susceptibility. Method VNG was used to measure oculomotor and caloric responses. Fifty young adults were recruited; 50 completed the oculomotor tests, and 31 completed the four caloric irrigations. MS susceptibility was evaluated with the Motion Sickness Susceptibility Questionnaire–Short Form; in this study, percent susceptibility ranged from 0% to 100% in the participants. Participants were divided into three susceptibility groups (Low, Mid, and High). Repeated-measures analyses of variance and pairwise comparisons determined significance among the groups on the VNG test results. Results Oculomotor test results revealed no significant differences among the MS susceptibility groups. Caloric stimuli elicited responses that were correlated positively with susceptibility to MS. Slow-phase velocity was slowest in the Low MS group compared to the Mid and High groups. There was no significant asymmetry between ears in any of the groups. Conclusions MS susceptibility was significantly and positively correlated with caloric slow-phase velocity. Although asymmetries between ears are purported to be associated with MS, asymmetries were not evident. Susceptibility to MS may contribute to interindividual variability of caloric responses within the normal range.


1983 ◽  
Vol 91 (1) ◽  
pp. 76-80 ◽  
Author(s):  
Carsten Wennmo ◽  
Nils Gunnar Henriksson ◽  
Bengt Hindfelt ◽  
Ilmari PyykkÖ ◽  
MÅNs Magnusson

The maximum velocity gain of smooth pursuit and optokinetic, vestibular, and optovestibular slow phases was examined in 15 patients with pontine, 10 with medullary, 10 with cerebellar, and 5 with combined cerebello — brain stem disorders. Marked dissociations were observed between smooth pursuit and optokinetic slow phases, especially in medullary disease. A cerebellar deficit enhanced slow phase velocity gain during rotation in darkness, whereas the corresponding gain during rotation in light was normal.


Sign in / Sign up

Export Citation Format

Share Document