scholarly journals On the global stability of a delay epidemic model

Author(s):  
Xiaodong Lin

AbstractIn this paper, we study the asymptotic behavior of an SIRS epidemic model with a time delay in the recovered class and a nonlinear incidence rate. A conjecture of Hethcote et al. [5] on the global stability of the disease-free equilibrium is solved. Moreover, we analyse the model when the contact number takes its threshold value. We show that solutions tend to either the disease-free equilibrium or to a unique positive endemic equilibrium, and there is no periodic solution.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Xinli Wang

This paper presents an investigation on the dynamics of an epidemic model with vital dynamics and a nonlinear incidence rate of saturated mass action as a function of the ratio of the number of the infectives to that of the susceptibles. The stabilities of the disease-free equilibrium and the endemic equilibrium are first studied. Under the assumption of nonexistence of periodic solution, the global dynamics of the model is established: either the number of infective individuals tends to zero as time evolves or it produces bistability in which there is a region such that the disease will persist if the initial position lies in the region and disappears if the initial position lies outside this region. Computer simulation shows such results.


Author(s):  
A. M. Yousef ◽  
S. M. Salman

Abstract:In this work we study a fractional-order susceptible-infective-recovered-susceptible (SIRS) epidemic model with a nonlinear incidence rate. The incidence is assumed to be a convex function with respect to the infective class of a host population. Local and uniform stability analysis of the disease-free equilibrium is investigated. The conditions for the existence of endemic equilibria (EE) are given. Local stability of the EE is discussed. Conditions for the existence of Hopf bifurcation at the EE are given. Most importantly, conditions ensuring that the system exhibits backward bifurcation are provided. Numerical simulations are performed to verify the correctness of results obtained analytically.


2012 ◽  
Vol 479-481 ◽  
pp. 1495-1498 ◽  
Author(s):  
Jun Hong Li ◽  
Ning Cui ◽  
Hong Kai Sun

An SIRS epidemic model with nonlinear incidence rate is studied. It is assumed that susceptible and infectious individuals have constant immigration rates. By means of Dulac function and Poincare-Bendixson Theorem, we proved the global asymptotical stable results of the disease-free equilibrium. It is then obtained the model undergoes Hopf bifurcation and existence of one limit cycle. Some numerical simulations are given to illustrate the analytical results.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Wanyong Wang ◽  
Lijuan Chen

A delayed epidemic model with nonlinear incidence rate which depends on the ratio of the numbers of susceptible and infectious individuals is considered. By analyzing the corresponding characteristic equations, the effects of time delay on the stability of the equilibria are studied. By choosing time delay as bifurcation parameter, the critical value of time delay at which a Hopf bifurcation occurs is obtained. In order to derive the normal form of the Hopf bifurcation, an extended method of multiple scales is developed and used. Then, the amplitude of bifurcating periodic solution and the conditions which determine the stability of the bifurcating periodic solution are obtained. The validity of analytical results is shown by their consistency with numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document