The Elimination of Wall Effects in Axial-Flow Compressor Stages

1953 ◽  
Vol 57 (508) ◽  
pp. 241-243
Author(s):  
J. M. Stephenson

Compressor stages are usually designed on the assumption that the gas velocity is nowhere affected by the friction at the walls. The only way in which viscosity is taken into account is in the assumed efficiency, and in a guessed “work-done factor,” which ensures that by aiming high the required work is actually attained.It is known that the radial profile of the axial velocity component becomes more and more peaked through successive stages of a compressor, so that the assumptions just quoted become very inaccurate. It is possible that the efficiency of a stage could be raised considerably if the axial velocity profile were controlled; moreover up to 20 per cent. more work could be done if a “ work-done factor ” did not have to be applied.

1953 ◽  
Vol 57 (511) ◽  
pp. 463-463
Author(s):  
R. G. Taylor

In Mr. J. M. Stephenson's Technical Note, “ The Elimination of Wall Effects in Axial-Flow Compressor Stages,” in the April 1953 issue of the Journal, the author suggests that the blade rows of an axial flow compressor are so closely spaced as to ensure that the axial velocity profile is unchanged across the rows. Whether this statement is correct or not such an assumption regarding the axial velocity profile is a basic design condition and when made it will not leave any flexibility in the choice of the function f(r).


1980 ◽  
Vol 102 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Mitsukiyo Murakami ◽  
Kouji Kikuyama

Experimental results concerning the flow pattern and hydraulic resistance in a rotating pipe are described. A fully developed turbulent flow was introduced into a long smooth pipe rotating about its axis, and changes of the flow pattern, together with hydraulic loss within the pipe, were examined by measuring the velocity and pressure distributions across sections at various distance from the pipe entrance. Increase of pipe rotation continuously reduces the hydraulic loss and gradually changes the axial velocity profile from a turbulent type to a laminar one. Governing factors for these changes are discussed.


1965 ◽  
Vol 69 (651) ◽  
pp. 201-202 ◽  
Author(s):  
W. D. Morris

When fluid flows in a tube which rotates about an arbitrary axis, the presence of centripetal and Coriolis acceleration components modify the velocity and pressure fields which exist in the absence of rotation. Barua considered the case of an incompressible fluid flowing in laminar motion through a cylindrical tube which was rotating about an axis perpendicular to itself with uniform angular velocity. For distances well away from the tube entrance Barua illustrated that secondary flow in the r-θ plane occurred and that the axial velocity profile was distorted towards the leading edge of the tube. Since the pressure gradient along the tube is proportional to the gradient of the axial velocity profile at the tube wall the rotation thus has a consequential influence on the resistance to flow offered by the tube.


1997 ◽  
Vol 119 (3) ◽  
pp. 309-316 ◽  
Author(s):  
M. Nishida ◽  
Y. Inaba ◽  
K. Tanishita

In order to clarify the gas transport process in high-frequency oscillation, we measured the axial velocity profile and the axial effective diffusivity in a single asymmetric bifurcating tube, based on the Horsfield airway model, with sinusoidally oscillatory flow. The axial velocity profiles were measured using a laser-Doppler velocimeter, and the effective diffusivities were evaluated using a simple bolus injection method. The axial velocity profile was found to be nonuniform, promoting axial gas dispersion by the spread of the concentration profile and lateral mixing. The geometric asymmetry of the bifurcation was responsible for the difference in gas transport between the main bronchi. The axial gas transport in the left main bronchus was 2.3 times as large as that of the straight tube, whereas the gas transport in the right main bronchus was slightly larger than that of the straight tube. Thus localized variation in gas transport characterized the heterogeneous respiratory function of the lung.


1961 ◽  
Vol 83 (3) ◽  
pp. 303-320 ◽  
Author(s):  
Karl Kovach ◽  
D. M. Sandercock

A five-stage axial-flow compressor with all rotors operating with transonic relative inlet Mach numbers was designed as a research vehicle at the Lewis Research Center in 1952. The compressor was designed and tested as a component of a turbojet engine. This paper summarizes the research work done on this compressor including the aerodynamic design and detailed performance characteristics.


1985 ◽  
Vol 28 (245) ◽  
pp. 2644-2651
Author(s):  
Kouzou SUDOU ◽  
Masaru SUMIDA ◽  
Toshihiro TAKAMI ◽  
Ryuichiro YAMANE

2008 ◽  
Vol 20 (5) ◽  
pp. 656-661 ◽  
Author(s):  
Zu-rong Ding ◽  
Bin Liu ◽  
Shuo Yang ◽  
Yan Xia

Sign in / Sign up

Export Citation Format

Share Document