arbitrary axis
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Andrew B. Matheson ◽  
Tania Mendonca ◽  
Graham M. Gibson ◽  
Paul A. Dalgarno ◽  
Amanda J. Wright ◽  
...  

Microrheology with optical tweezers (MOT) measurements are usually performed using optical traps that are close to isotropic across the plane being imaged, but little is known about what happens when this is not the case. In this work, we investigate the effect of anisotropic optical traps on microrheology measurements. This is an interesting problem from a fundamental physics perspective, but it also has practical ramifications because in 3D all optical traps are anisotropic due to the difference in the intensity distribution of the trapping laser along axes parallel and perpendicular to the direction of beam propagation. We find that attempting viscosity measurements with highly anisotropic optical traps will return spurious results, unless the axis with maximum variance in bead position is identified. However, for anisotropic traps with two axes of symmetry such as traps with an elliptical cross section, the analytical approach introduced in this work allows us to explore a wider range of time scales than those accessible with symmetric traps. We have also identified a threshold level of anisotropy in optical trap strength of ~30%, below which conventional methods using a single arbitrary axis can still be used to extract valuable microrheological results. We envisage that the outcomes of this study will have important practical ramifications on how all MOT measurements should be conducted and analyzed in future applications.


Author(s):  
Che-Wen Chen ◽  
An-Chao Tsai ◽  
Wei-Yen Chang ◽  
Hsuan-Fu Huang ◽  
Jhing-Fa Wang

2020 ◽  
Vol 239 ◽  
pp. 05011
Author(s):  
Marius Peck ◽  
Uwe Bonnes ◽  
Joachim Enders ◽  
Alf Göök ◽  
Joerg Hehner ◽  
...  

A position-sensitive twin Frisch-grid ionization chamber has been constructed for future photofission experiments using nearly monochromatic, linearly polarized gamma-ray beams. By exchanging the anode plates in the standard ionization chamber on both sides by an array of grid- and strip-anodes, which are rotated by 90° relative to each other and read out by means of resistive charge division, a position sensitivity is achieved that allows the azimuthal fragment emission angle and hence the fission axis orientation to be determined. The performance of this gaseous detector has been studied using the well-known 252Cf spontaneous fission process. The fission axis orientation could be determined relative to an arbitrary axis in space with a resolution better than 7° FWHM. Measured pre-neutron mass and total kinetic energy distributions are consistent with literature, which ensures that the mass and energy resolution for fission fragments is not affected by the position-sensitive structure.


Author(s):  
Thomas Semm ◽  
Michael B. Nierlich ◽  
Michael F. Zaeh

Virtual prototypes, e.g., finite element models, are commonly used to reduce the development times of a new machine tool generation. However, the accuracy of these models is often limited by their representation of damping effects and the possibility to efficiently simulate the dynamic behavior in different axis positions. This paper shows the changing local damping distribution within a single-axis machine tool configuration for different axis positions. Based on this investigation, an approach to accurately model the position-dependent dynamics, while keeping the calculation times small, is presented. The virtual model of the machine is divided in several substructures, which consider the local damping behavior of each dissipation source. The reduced mass, stiffness, and damping matrices are coupled in the desired machine position by using multipoint constraints, which are generated at the desired machine position after the reduction of the substructures. Four different approaches to apply multipoint constraints on reduced substructures are compared, followed by an investigation of their influencing parameters. The most promising approach is compared with a model without local damping representation as well as a model without substructuring. By considering the local damping effects within the finite element model and coupling the reduced models of each component in arbitrary axis positions, an efficient analysis and optimization of the dynamic behavior of a machine tool over the whole workspace can be conducted.


2017 ◽  
Vol 5 (1) ◽  
pp. 32-35 ◽  
Author(s):  
Гирш ◽  
A. Girsh

Descriptive geometry, as the elementary one, studies the real world by its abstractions. But Euclid’s geometry of the real world is conjugated to pseudo-Euclidean geometry, and they make a conjugated pair. As a consequence, each real figure is conjugated with some imaginary pattern. This paper apart from some science facts demonstrates the presence of imaginary patterns in geometric constructions, where the imaginary patterns manifest themselves as singularities or as geometrically imaginary points (GIP) in “Real — Imaginary” conjugate pairs. The study is conducted, as a rule, from simple to complex, from particulars to generals. Rotation of a circle around an arbitrary axis generates, in the general case, a quartic surface. Among the quartic surfaces are a circular torus and a sphere as a special case of the torus. The torus is obtained from the circle rotation around an axis lying in the circle plane. If the axis does not intersect the generating circle, then the surface is called an open torus; when the axis intersects the generating circle, then the surface is called a closed torus; when the rotation axis passes through the center of the generating circle, then the surface is a sphere. The open torus is associated with a bagel, and the closed one — with an apple. The torus is a perfect example for the application of two well-known Guldin’s formulas. Next, the imaginary torus support is considered in this paper, at the end of which the sphere and its imaginary sup - port are considered. Imaginary patterns lead to the complex numbers, in regards to which grieved the great J. Steiner, calling them "hieroglyphs of analysis". But imaginary patterns exist apart from analysis formulas — they are the part of geometry. J.V. Poncelet was the first who understood the imaginary points in 1812, being in Russian captivity in Saratov and, what is important, without analysis formulas at all. Computational geometry often shows quantities, large numbers of real figures, because it takes into account the imaginary images too.


Robotica ◽  
2017 ◽  
Vol 35 (12) ◽  
pp. 2319-2329 ◽  
Author(s):  
Yongjie Zhao ◽  
Gang Cheng

SUMMARYThis paper introduces the methodology of the dimensional synthesis for a 3UPS-PRU parallel robot. The dimensional synthesis of the 3UPS-PRU parallel robot is proposed considering the maximum input velocity of actuating joints as the objective function and constraints on the installation dimension, robot dimension, joint rotation angle and interference. The objective of the dimensional synthesis is to minimize the maximum input velocity of actuating joints when the moving platform translates along the z-axis in the maximum linear velocity and rotates about an arbitrary axis in the maximum angular velocity in the desired workspace. The constraint on the robot dimension is included in the dimensional synthesis of the 3UPS-PRU parallel robot when pursuing the kinematic property to meet the miniaturization principle with the reduced building cost. An example of the dimensional synthesis of a 3UPS-PRU parallel robot is presented with the maximum linear velocity and angular velocity required for the moving platform in the desired workspace.


2016 ◽  
Vol 113 (52) ◽  
pp. 14926-14931 ◽  
Author(s):  
Stefano Donati ◽  
Lorenzo Dominici ◽  
Galbadrakh Dagvadorj ◽  
Dario Ballarini ◽  
Milena De Giorgi ◽  
...  

We study the spin vortices and skyrmions coherently imprinted into an exciton–polariton condensate on a planar semiconductor microcavity. We demonstrate that the presence of a polarization anisotropy can induce a complex dynamics of these structured topologies, leading to the twist of their circuitation on the Poincaré sphere of polarizations. The theoretical description of the results carries the concept of generalized quantum vortices in two-component superfluids, which are conformal with polarization loops around an arbitrary axis in the pseudospin space.


Sign in / Sign up

Export Citation Format

Share Document