Great Circles and Rhumb Lines on the Complex Plane

2017 ◽  
Vol 70 (3) ◽  
pp. 618-627
Author(s):  
Robin G. Stuart

Mapping points on the Riemann sphere to points on the plane of complex numbers by stereographic projection has been shown to offer a number of advantages when applied to problems in navigation traditionally handled using spherical trigonometry. Here it is shown that the same approach can be used for problems involving great circles and/or rhumb lines and it results in simple, compact expressions suitable for efficient computer evaluation. Worked numerical examples are given and the values obtained are compared to standard references.

Author(s):  
A. F. Beardon

AbstractThe unwinding number of a complex number was introduced to process automatic computations involving complex numbers and multi-valued complex functions, and has been successfully applied to computations involving branches of the Lambert W function. In this partly expository note we discuss the unwinding number from a purely topological perspective, and link it to the classical winding number of a curve in the complex plane. We also use the unwinding number to give a representation of the branches $$W_k$$ W k of the Lambert W function as a line integral.


Author(s):  
Samir Lemita ◽  
Sami Touati ◽  
Kheireddine Derbal

This paper’s purpose is to study the nonlinear Fredholm implicit integro-differential equation in the complex plane, where the term implicit integro-differential means that the derivative of unknown function is founded inside of the integral operator. Initially, according to Banach fixed point theory, we ensure that the equation has a unique solution under particular conditions. However, we exhibit a numerical process based on the conjunction between Nyström and Picard methods, for the sake of approximating solutions of this equation. In addition to that, the convergence analysis of this numerical process is demonstrated, and some illustrated numerical examples are presented.


Author(s):  
Glen Van Brummelen

This chapter deals with stereographic projection, which is superior to other projections of the sphere because of its angle-preserving and circle-preserving properties; the first property gave instrument makers a huge advantage and the second provides clear astronomical advantages. The earliest text on stereographic projection is Ptolemy's Planisphere, in which he explains how to use stereographic projection to solve problems involving rising times, suggesting that the astrolabe may have existed already. After providing an overview of the astrolabe, an instrument for solving astronomical problems, the chapter considers how stereographic projection is used in solving triangles. It then describes the Cesàro method, named after Giuseppe Cesàro, that uses stereographic projection to project an arbitrary triangle ABC onto a plane. It also examines B. M. Brown's complaint against Cesàro's approach to spherical trigonometry.


1976 ◽  
Vol 28 (1) ◽  
pp. 112-115 ◽  
Author(s):  
P. M. Gauthier ◽  
A. Roth ◽  
J. L. Walsh

Let ƒ b e a mapping defined on a compact subset K of the finite complex plane C and taking its values on the extended plane C ⋃ ﹛ ∞﹜. For x a metric on the extended plane, we consider the possibility of approximating ƒ x-uniformly on K by rational functions. Since all metrics on C ⋃ ﹛oo ﹜ are equivalent, we shall consider that x is the chordal metric on the Riemann sphere of diameter one resting on a finite plane at the origin.


2020 ◽  
Vol 4 (1) ◽  
pp. 8
Author(s):  
Xuefeng Zhang ◽  
Yuqing Yan

This paper is devoted to the admissibility issue of singular fractional order systems with order α ∈ ( 0 , 1 ) based on complex variables. Firstly, with regard to admissibility, necessary and sufficient conditions are obtained by strict LMI in complex plane. Then, an observer-based controller is designed to ensure system admissible. Finally, numerical examples are given to reveal the validity of the theoretical conclusions.


2011 ◽  
Vol 21 (11) ◽  
pp. 3323-3339
Author(s):  
RIKA HAGIHARA ◽  
JANE HAWKINS

We study a family of rational maps of the Riemann sphere with the property that each map has two fixed points with multiplier -1; moreover, each map has no period 2 orbits. The family we analyze is Ra(z) = (z3 - z)/(-z2 + az + 1), where a varies over all nonzero complex numbers. We discuss many dynamical properties of Ra including bifurcations of critical orbit behavior as a varies, connectivity of the Julia set J(Ra), and we give estimates on the Hausdorff dimension of J(Ra).


2012 ◽  
Vol 22 (12) ◽  
pp. 1230043 ◽  
Author(s):  
GORAN RADUNOVIĆ ◽  
DARKO ŽUBRINIĆ ◽  
VESNA ŽUPANOVIĆ

Using geometric inversion with respect to the origin, we extend the definition of box dimension to the case of unbounded subsets of Euclidean spaces. Alternative but equivalent definition is provided using stereographic projection on the Riemann sphere. We study its basic properties, and apply it to the study of the Hopf–Takens bifurcation at infinity.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Mengji Shi ◽  
Kaiyu Qin

This paper solves control problems of agents achieving consensus motions in presence of nonuniform time delays by obtaining the maximal tolerable delay value. Two types of consensus motions are considered: the rectilinear motion and the rotational motion. Unlike former results, this paper has remarkably reduced conservativeness of the consensus conditions provided in such form: for each system, if all the nonuniform time delays are bounded by the maximal tolerable delay value which is referred to as “delay margin,” the system will achieve consensus motion; otherwise, if all the delays exceed the delay margin, the system will be unstable. When discussing the system which is intended to achieve rotational consensus motion, an expanded system whose state variables are real numbers (those of the original system are complex numbers) is introduced, and corresponding consensus condition is given also in the form of delay margin. Numerical examples are provided to illustrate the results.


2020 ◽  
Vol 08 (04) ◽  
pp. 44-51
Author(s):  
Egahi M. ◽  
Agbata B.C. ◽  
Ogwuche O.I. ◽  
Soomiyol M. C

2018 ◽  
Vol 24 (1) ◽  
pp. 20-33 ◽  
Author(s):  
Darius Siaučiūnas ◽  
Violeta Franckevič ◽  
Antanas Laurinčikas

The periodic Hurwitz zeta-function ζ(s, α; a), s = σ +it, with parameter 0 < α ≤ 1 and periodic sequence of complex numbers a = {am } is defined, for σ > 1, by series sum from m=0 to ∞ am / (m+α)s, and can be continued moromorphically to the whole complex plane. It is known that the function ζ(s, α; a) with transcendental orrational α is universal, i.e., its shifts ζ(s + iτ, α; a) approximate all analytic functions defined in the strip D = { s ∈ C : 1/2 σ < 1. In the paper, it is proved that, for all 0 < α ≤ 1 and a, there exists a non-empty closed set Fα,a of analytic functions on D such that every function f ∈ Fα,a can be approximated by shifts ζ(s + iτ, α; a).


Sign in / Sign up

Export Citation Format

Share Document