Benefit of Sparse Reference Network in BDS Single Point Positioning with Single-Frequency Measurements

2017 ◽  
Vol 71 (2) ◽  
pp. 403-418 ◽  
Author(s):  
Xiaomin Luo ◽  
Yidong Lou ◽  
Xiaopeng Gong ◽  
Shengfeng Gu ◽  
Biyan Chen

The current positioning accuracy of the BeiDou Navigation Satellite System (BDS) Single Point Positioning (SPP) with code measurement is in the order of several metres due to systematic errors. To further reduce the systematic errors in SPP, this contribution develops a new strategy to BDS SPP with a sparse reference network, named Augmented SPP (A-SPP). In this method, the Combined Residual Errors (CRE) products of BDS B1I measurement are integrated with three optional base stations that are close to the rover station. Based on the Satellite Elevation Angle Weighted (SEAW) average technique, the code residual errors of each BDS satellite observed by the rover station can be acquired epoch-by-epoch. Finally, the corrected code observations for the rover station can be utilised to achieve an A-SPP solution. The validation of this method is confirmed by both static and kinematic tests. Results clearly show that the accuracies of the A-SPP solution for horizontal and vertical directions are better than 0·5 m and 1·0 m. This study suggests that the proposed A-SPP solution is a good option for single-frequency GNSS users to improve their positioning performance.

2020 ◽  
Author(s):  
Artur Fischer ◽  
Sławomir Cellmer ◽  
Krzysztof Nowel

Abstract. This paper proposes a new mathematical method of ionospheric delay estimation in single point positioning (SPP) using a single-frequency receiver. The proposed approach focuses on the ΔVTEC component estimation (MSPPwithdVTEC) with the assumption of an initial and constant value equal to 5 in any observed epoch. The principal purpose of the study is to examine the reliability of this approach to become independent from the external data in the ionospheric correction calculation process. To verify the MSPPwithdVTEC, the SPP with the Klobuchar algorithm was employed as a reference model, utilizing the coefficients from the navigation message. Moreover, to specify the level of precision of the MSPPwithdVTEC, the SPP with the IGS TEC map was adopted for comparison as the high-quality product in the ionospheric delay determination. To perform the computational tests, real code data was involved from three different localizations in Scandinavia using two parallel days. The criterion were the ionospheric changes depending on geodetic latitude. Referring to the Klobuchar model, the MSPPwithdVTEC obtained a significant improvement of 15–25 % in the final SPP solutions. For the SPP approach employing the IGS TEC map and for the MSPPwithdVTEC, the difference in error reduction was not significant, and it did not exceed 1.0 % for the IGS TEC map. Therefore, the MSPPwithdVTEC can be assessed as an accurate SPP method based on error reduction value, close to the SPP approach with the IGS TEC map. The main advantage of the proposed approach is that it does not need external data.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Antonio Angrisano ◽  
Salvatore Gaglione ◽  
Ciro Gioia ◽  
Marco Massaro ◽  
Salvatore Troisi

The GNSS measurements are strongly affected by ionospheric effects, due to the signal propagation through ionosphere; these effects could severely degrade the position; hence, a model to limit or remove the ionospheric error is necessary. The use of several techniques (DGPS, SBAS, and GBAS) reduces the ionospheric effect, but implies the use of expensive devices and/or complex architectures necessary to meet strong requirements in terms of accuracy and reliability for safety critical application. The cheapest and most widespread GNSS devices are single frequency stand-alone receivers able to partially correct this kind of error using suitable models. These algorithms compute the ionospheric delay starting from ionospheric model, which uses parameters broadcast within the navigation messages. NeQuick is a three-dimensional and time-dependent ionospheric model adopted by Galileo, the European GNSS, and developed by International Centre for Theoretical Physics (ICTP) together with Institute for Geophysics, Astrophysics, and Meteorology of the University of Graz. The aim of this paper is the performance assessment in single point positioning of the NeQuick Galileo version provided by ESA and the comparison with respect to the Klobuchar model used for GPS; the analysis is performed in position domain and the errors are examined in terms of RMS and maximum error for the horizontal and vertical components. A deep analysis is also provided for the application of the exanimated model in the first possible Galileo only position fix.


2019 ◽  
Vol 63 (9) ◽  
pp. 2982-2994 ◽  
Author(s):  
Chunming Fan ◽  
Qinglin Guan ◽  
Zhengping Zhu ◽  
Fei Peng ◽  
Wei Xiang

GPS Solutions ◽  
2013 ◽  
Vol 18 (2) ◽  
pp. 273-282 ◽  
Author(s):  
Jean-Philippe Montillet ◽  
Lukasz K. Bonenberg ◽  
Craig M. Hancock ◽  
Gethin W. Roberts

Positioning ◽  
2014 ◽  
Vol 05 (04) ◽  
pp. 107-114 ◽  
Author(s):  
Rock Santerre ◽  
Lin Pan ◽  
Changsheng Cai ◽  
Jianjun Zhu

2007 ◽  
Vol 42 (3) ◽  
pp. 149-153
Author(s):  
A. Farah

Code Single Point Positioning Using Nominal Gnss Constellations (Future Perception) Global Navigation Satellite Systems (GNSS) have an endless number of applications in industry, science, military, transportation and recreation & sports. Two systems are currently in operation namely GPS (the USA Global Positioning System) and GLONASS (the Russian GLObal NAvigation Satellite System), and a third is planned, the European satellite navigation system GALILEO. The potential performance improvements achievable through combining these systems could be significant and expectations are high. The need is inevitable to explore the future of positioning from different nominal constellations. In this research paper, Bernese 5.0 software could be modified to simulate and process GNSS observations from three different constellations (GPS, Glonass and Galileo) using different combinations. This study presents results of code single point positioning for five stations using the three constellations and different combinations.


Sign in / Sign up

Export Citation Format

Share Document