Fusion-based Satellite Clock Bias Prediction Considering Characteristics and Fitted Residue

2018 ◽  
Vol 71 (4) ◽  
pp. 955-970 ◽  
Author(s):  
Jicang Lu ◽  
Chao Zhang ◽  
Yong Zheng ◽  
Ruopu Wang

As Satellite Clock Bias (SCB) prediction may be affected by various factors such as periodic items, sampling length, and stochastic items, a fusion-based prediction method is proposed by considering characteristics of SCB and fitted residue. On this basis, an instance algorithm is presented by fusing four typical prediction models. First, we use Empirical Mode Decomposition (EMD) to pre-process and decompose the SCB series into multiple components with various characteristics. Then, we analyse the fitting performance of each model for different components and prediction length, namely short-, mid- and long-term prediction, and select models with the best performance. Next, we analyse fitted residue of the reconstructed SCB, and select the model with the best fitting results. Finally, we fuse the multiple selected models for SCB prediction. The method is tested using Global Positioning System (GPS) precise clock products provided by the International Global Navigation Satellite System Service (IGS). Experimental results show that, compared with single prediction models and existing combination models, the proposed fusion-based prediction method improves accuracy and stability. In particular, the proposed method is more stable and has better performance for mid- and long-term prediction.

2021 ◽  
pp. 619-628
Author(s):  
Weitao Lu ◽  
Lue Chen ◽  
Zhijin Zhou ◽  
Songtao Han ◽  
Tianpeng Ren

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Wei Ming ◽  
Yukun Bao ◽  
Zhongyi Hu ◽  
Tao Xiong

The hybrid ARIMA-SVMs prediction models have been established recently, which take advantage of the unique strength of ARIMA and SVMs models in linear and nonlinear modeling, respectively. Built upon this hybrid ARIMA-SVMs models alike, this study goes further to extend them into the case of multistep-ahead prediction for air passengers traffic with the two most commonly used multistep-ahead prediction strategies, that is, iterated strategy and direct strategy. Additionally, the effectiveness of data preprocessing approaches, such as deseasonalization and detrending, is investigated and proofed along with the two strategies. Real data sets including four selected airlines’ monthly series were collected to justify the effectiveness of the proposed approach. Empirical results demonstrate that the direct strategy performs better than iterative one in long term prediction case while iterative one performs better in the case of short term prediction. Furthermore, both deseasonalization and detrending can significantly improve the prediction accuracy for both strategies, indicating the necessity of data preprocessing. As such, this study contributes as a full reference to the planners from air transportation industries on how to tackle multistep-ahead prediction tasks in the implementation of either prediction strategy.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2907
Author(s):  
Yuexin Fu ◽  
Zhuhua Hu ◽  
Yaochi Zhao ◽  
Mengxing Huang

In smart mariculture, traditional methods are not only difficult to adapt to the complex, dynamic and changeable environment in open waters, but also have many problems, such as poor accuracy, high time complexity and poor long-term prediction. To solve these deficiencies, a new water quality prediction method based on TCN (temporal convolutional network) is proposed to predict dissolved oxygen, water temperature, and pH. The TCN prediction network can extract time series features and in-depth data features by introducing dilated causal convolution, and has a good effect of long-term prediction. At the same time, it is predicted that the network can process time series data in parallel, which greatly improves the time throughput of the model. Firstly, we arrange the 23,000 sets of water quality data collected in the cages according to time. Secondly, we use the Pearson correlation coefficient method to analyze the correlation information between water quality parameters. Finally, a long-term prediction model of water quality parameters based on a time domain convolutional network is constructed by using prior information and pre-processed water quality data. Experimental results show that long-term prediction method based on TCN has higher accuracy and less time complexity, compared with RNN (recurrent neural network), SRU (simple recurrent unit), BI-SRU (bi-directional simple recurrent unit), GRU (gated recurrent unit) and LSTM (long short-term memory). The prediction accuracy can reach up to 91.91%. The time costs of training model and prediction are reduced by an average of 64.92% and 7.24%, respectively.


Author(s):  
Xingwei Liu ◽  
Shixiong Fan ◽  
Jiaqi Qin ◽  
Yan Liu ◽  
Wei Wang

2009 ◽  
Vol 43 (11) ◽  
pp. 1611-1620 ◽  
Author(s):  
M. Pietrella ◽  
L. Perrone ◽  
G. Fontana ◽  
V. Romano ◽  
A. Malagnini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document