tensile fracture
Recently Published Documents


TOTAL DOCUMENTS

1126
(FIVE YEARS 255)

H-INDEX

45
(FIVE YEARS 8)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 610
Author(s):  
Qiang Zhu ◽  
Linfu Zhang ◽  
Chuanjie Wang ◽  
Gang Chen ◽  
Heyong Qin ◽  
...  

As the key materials of aircraft engines, nickel-based superalloys have excellent comprehensive properties. Mircotensile experiments were carried out based on in situ digital image correlation (DIC) and in situ synchrotron radiation (SR) technique. The effects of the δ phase on the grain orientation, surface roughening, and strain localization were investigated. The results showed that the average kernel average misorientation (KAM) value of the fractured specimens increased significantly compared with that of the heat-treated specimens. The surface roughness decreased with an increasing volume fraction of the δ phase. The strain localization of specimens increased with the increasing ageing time. The size and volume fraction of voids gradually increased with the increase in plastic strain. Some small voids expanded into large voids with a complex morphology during micro-tensile deformation. The needle-like δ phase near the fracture broke into short rods, while the minor spherical δ phase did not break. The rod-like and needle-like δ phases provided channels for the propagation of the microcrack, and the accumulation of the microcrack eventually led to the fracture of specimens.


2022 ◽  
Vol 6 (1) ◽  
Author(s):  
Shuaifang Zhang ◽  
Wen Jiang ◽  
Michael R. Tonks

AbstractStrain energy decomposition methods in phase field fracture models separate strain energy that contributes to fracture from that which does not. However, various decomposition methods have been proposed in the literature, and it can be difficult to determine an appropriate method for a given problem. The goal of this work is to facilitate the choice of strain decomposition method by assessing the performance of three existing methods (spectral decomposition of the stress or the strain and deviatoric decomposition of the strain) and one new method (deviatoric decomposition of the stress) with several benchmark problems. In each benchmark problem, we compare the performance of the four methods using both qualitative and quantitative metrics. In the first benchmark, we compare the predicted mechanical behavior of cracked material. We then use four quasi-static benchmark cases: a single edge notched tension test, a single edge notched shear test, a three-point bending test, and a L-shaped panel test. Finally, we use two dynamic benchmark cases: a dynamic tensile fracture test and a dynamic shear fracture test. All four methods perform well in tension, the two spectral methods perform better in compression and with mixed mode (though the stress spectral method performs the best), and all the methods show minor issues in at least one of the shear cases. In general, whether the strain or the stress is decomposed does not have a significant impact on the predicted behavior.


2022 ◽  
Vol 355 ◽  
pp. 01006
Author(s):  
Miao Yang ◽  
Liyun Xing ◽  
Xiaobo Liu ◽  
Yuqi Dong ◽  
Jiliang Jin

The X-ray diffraction (XRD), scanning electron microscope (SEM), weight loss corrosion rate, corrosion residual strength (CRS), and slow strain rate tensile (SSRT) methods were used to study the effects of the addition of rare earth Erbium (Er) on the dynamic corrosion mechanical properties of the AM50 magnesium alloy. The results show that after Er was added, a new phase of Al3Er appeared and the microstructure was refined. The corrosion resistance of rare earth Er addition to the alloy was 0.5% > 1.5% > 1.0% > 0. Furthermore, the corrosion rates decreased in 432 h. The CRS results within 168 h show that the strength after an addition of 0.5% Er was the highest and the decline rate was the smallest. According to the shape of the tensile curve of CRS and the morphology of the tensile fracture, the addition of rare earth Er did not change the fracture form of the alloy, which remained as quasi-cleavage.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 23
Author(s):  
Liangwen Xie ◽  
Xianyong Zhu ◽  
Yuexiang Fan ◽  
Weijia Sun ◽  
Peng Wang ◽  
...  

In order to clarify the microstructural evolution and the mechanical property of dissimilar friction stir-welded joints of ZK60 and Mg-4.6Al-1.2Sn-0.7Zn magnesium alloys, two types of arrangement with ZK60 at advancing side (AS) or retreating side (RS) were adopted. The macrostructure and the microstructure of the dissimilar welded joints were discussed, and the microhardness and the transverse tensile properties of the joints were measured. There are three stirring sub-zones with different compositions and two clear interfaces within the joints. Due to the effect of both the original grain size of base materials and the growth of recrystallized grains, in the stir zone (SZ), the grain size of ZK60 increased slightly, while the grain size of Mg-4.6Al-1.2Sn-0.7Zn decreased significantly. The dissolution of precipitates was gradually significant from RS to AS within the SZ due to the gradual increase in strain and heat. The grain refinement led to an increase in hardness, while the dissolution of precipitates resulted in a decrease in hardness. The performance of the joints obtained with ZK60 placed on the RS is slightly better than that of that on the AS. The tensile fracture of both joints occurred at the interface between SZ and the thermos-mechanical affected zone at the AS, and showed a quasi-dissociative fracture.


Author(s):  
Raj Kumar ◽  
Vikas Upadhyay ◽  
Chaitanya Sharma

This work investigates the effect of process parameters on microstructure, mechanical properties, and fracture behavior of friction stir welded high-strength aluminum alloys AA2014-T6 and AA7075-T6. Optical micrograph, tensile property, and hardness profile of each weld were determined for analysis, and the tensile fracture surfaces were studied by scanning electron microscope. Welds microstructure were heterogeneous and displayed structures comprising of both base metals and the onion rings were seen in all welds except for the lowest heat input weld. Grains in the weld nugget zone were more refined on the retreating side than the other side. Asymmetric hardness profile had a distinct softened zone on each side whose location and softening extent varied with the processing parameters. Welding speed had a more significant effect on tensile strength than rotary speed and, drastically decreased the same. Faster welding speed formed microscopic defects and changed the appearance of fractured surfaces from flat to zigzag. The welds underwent ductile and mixed-mode tensile failure on the advancing side. Attainment of optimum combination of process parameters is imperative to yield defect-free stronger dissimilar welds


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yue Gao ◽  
Fei Shao ◽  
Qian Xu ◽  
Linyue Bai ◽  
Lei Gao ◽  
...  

The tensile performance of ductile tubes can be enhanced by the application of fillers. Research studies on the mechanical performance of filled tensile tubes have mainly focused on experiments and numerical simulations on concrete-filled steel tube (CFST) components, while the effects of factors such as size, section pattern, and material of filled tensile tubes on their performance have rarely been studied. In this research, the effects of size, section pattern, and material on the tensile performance of filled tubes have been evaluated through theoretical studies, simulations, and experiments. The tensile strength reinforcement and deformation weakening coefficients of filled circular thin-walled tubes corresponding to hollow tubes were theoretically deduced, and the influencing factors of the two were parametrically evaluated. Tensile performances of filled tubes with circular and square sections were compared with each other through numerical methods. In the current research, the circular section was optimized and prestressed circular hollow support section was proposed. Tensile fracture tests were performed on circular thin-walled tubes made of six different materials to determine material effects on the tensile performance of these structures. It was also found that metallic materials with good ductility significantly enhanced the tensile performance, fracture toughness, and energy consumption of test components containing prestressed filler.


2021 ◽  
Vol 9 ◽  
Author(s):  
Susheng Wang ◽  
Jiuchang Zhang ◽  
Lunyang Zhao ◽  
Wanlu Zhang

The tensile fracture is a widespread feature in rock excavation engineering, such as spalling around an opened tunnel. The phase field method (PFD) is a non-local theory to effectively simulate the quasi-brittle fracture of materials, especially for the propagation of a tensile crack. This work is dedicated to study the tensile failure characteristics of rock-like materials by the PFD simulation of the Brazilian test of the intact and fissure disk samples. The numerical results indicate that the tensile strength of the disk sample is anisotropic due to the influence of pre-existing cracks. The peak load decreases at first and then increases with the increase of the inclination angle, following the U-shaped trend. The simulation results also indicate that the wing crack growth is the main failure characteristic. Moreover, the crack propagation path initiates at the tip of the pre-existing crack when the inclination angle is less than 60°. Crack propagation initiates near the tip of the pre-existing crack when the angle is 75°, and it initiates at the middle of the pre-existing crack when the angle is 90°. Finally, all cracks extend to the loading position and approximately parallel to the loading direction. This process is in agreement with the Brazilian test of pre-existing cracks in the laboratory, which can validate the effectiveness of the PFD in simulating the tensile fracture of rock-like materials. This study can provide a reference for the fracture mechanism of the surrounding rock in the underground excavation.


2021 ◽  
Author(s):  
Zitong Guo ◽  
Zhongde Shan ◽  
JiHua Huang ◽  
Debo Xue

Abstract In order to improve the quality and efficiency of the Z-directional 3D preform forming, the Z-yarn friction force distribution model of the preform and its wear mechanism were investigated. Designed the tensile force measuring device of the replacement guide sleeves,the measured tensile force is equivalent to the Z-yarn friction force. Found that the frictional force was proportional to the number of preform layers, the frictional force applied to the one preform decreased from the corner, edge, sub-edge and middle in order. Established BP neural network model to predict the friction at different positions of preform with different layers, the error is within1.9%. The wear of Z-yarn was studied at different frictional positions and after different times of successive implantation into the preform, showed that with the increase of the number of Z-yarn implantation and the friction force, the amount of carbon fiber bundle hairiness gradually increase, and the tensile fracture strength damage of the fiber is increasingly affected by the friction force,and in the corner position of the preform, when the number of implantation is 25 times, the fiber fracture strength will occur non-linearly and substantially decreased, in order to avoid fiber fracture in the implantation process, the Z-yarn needs to be replaced in time after 20~25 times of continuous


Sign in / Sign up

Export Citation Format

Share Document