Organization of transcription and pre-mRNA splicing within the mammalian cell nucleus

Author(s):  
D.L. Spector ◽  
S. Huang ◽  
S. Kaurin

We have been interested in the organization of RNA polymerase II transcription and pre-mRNA splicing within the cell nucleus. Several models have been proposed for the functional organization of RNA within the eukaryotic nucleus and for the relationship of this organization to the distribution of pre-mRNA splicing factors. One model suggests that RNAs which must be spliced are capable of recruiting splicing factors to the sites of transcription from storage and/or reassembly sites. When one examines the organization of splicing factors in the nucleus in comparison to the sites of chromatin it is clear that splicing factors are not localized in coincidence with heterochromatin (Fig. 1). Instead, they are distributed in a speckled pattern which is composed of both perichromatin fibrils and interchromatin granule clusters. The perichromatin fibrils are distributed on the periphery of heterochromatin and on the periphery of interchromatin granule clusters as well as being diffusely distributed throughout the nucleoplasm. These nuclear regions have been previously shown to represent initial sites of incorporation of 3H-uridine.

Author(s):  
S. Huang ◽  
T. J. Deerinck ◽  
M. H. Ellisman ◽  
D. L. Spector

Previous studies from our laboratory as well as other laboratories have shown that a variety of pre-mRNA splicing factors are localized to a subnuclear speckled domain when mammalian cells are immunolabeled with antibodies against these pre-mRNA splicing factors. At the electron microscopic level the speckled pattern is composed of both interchromatin granule clusters and perichromatin fibrils. A large body of evidence has accumulated from both our laboratory and other laboratories which has suggested that the perichromatin fibrils represent nascent transcripts and the interchromatin granule clusters represent storage and/or assembly sites for pre-mRNA splicing factors. The majority of substrates for these splicing factors are pre-mRNAs which contain a poly(A) tail of approximately 200-300 nucleotides. During the past year we have studied the distribution of poly(A)+ RNA in the mammalian cell nucleus and its transport through nuclear pores by fluorescence and electron microscopic in situ hybridization. Poly(A)+ RNA was detected in the nucleus as a speckled pattern which we have found to totally colocalize with pre-mRNA splicing factors at interchromatin granule clusters and perichromatin fibrils.


1994 ◽  
Vol 124 (3) ◽  
pp. 249-260 ◽  
Author(s):  
RT O'Keefe ◽  
A Mayeda ◽  
CL Sadowski ◽  
AR Krainer ◽  
DL Spector

We have examined the functional significance of the organization of pre-mRNA splicing factors in a speckled distribution in the mammalian cell nucleus. Upon microinjection into living cells of oligonucleotides or antibodies that inhibit pre-mRNA splicing in vitro, we observed major changes in the organization of splicing factors in vivo. Interchromatin granule clusters became uniform in shape, decreased in number, and increased in both size and content of splicing factors, as measured by immunofluorescence. These changes were transient and the organization of splicing factors returned to their normal distribution by 24 h following microinjection. Microinjection of these oligonucleotides or antibodies also resulted in a reduction of transcription in vivo, but the oligonucleotides did not inhibit transcription in vitro. Control oligonucleotides did not disrupt splicing or transcription in vivo. We propose that the reorganization of splicing factors we observed is the result of the inhibition of splicing in vivo.


2001 ◽  
Vol 114 (13) ◽  
pp. 2501-2511 ◽  
Author(s):  
Shona L. Osborne ◽  
Claire L. Thomas ◽  
Steve Gschmeissner ◽  
Giampietro Schiavo

Phosphoinositide turnover regulates multiple cellular processes. Compared with their well-known cytosolic roles, limited information is available on the functions of nuclear phosphoinositides. Here, we show that phosphatidylinositol(4,5)-bisphosphate (PtdIns(4,5)P2) stably associates with electron-dense particles within the nucleus that resemble interchromatin granule clusters. These PtdIns(4,5)P2-containing structures have a distribution which is cell-cycle dependent and contain components of both the transcriptional and pre-mRNA processing machinery, including RNA polymerase II and the splicing factor SC-35. Immunodepletion and add-back experiments demonstrate that PtdIns(4,5)P2 and associated factors are necessary but not sufficient for pre-mRNA splicing in vitro, indicating a crucial role for PtdIns(4,5)P2-containing complexes in nuclear pre-mRNA processing.


Author(s):  
S. Huang ◽  
D.L. Spector

Several models have been proposed for the functional organization of RNA within the eukaryotic nucleus and for the relationship of this organization to the distribution of pre-mRNA splicing factors. One model suggests that RNAs which must be spliced are capable of recruiting splicing factors to the sites of transcription from storage and/or reassembly sites. In order to further evaluate this model we have transiently transfected HeLa cells with constructs which express RNA transcripts containing introns, lacking introns, or containing an intron with a deletion at the 3' splice site. The expression of RNAs was detected by in situ hybridization and their association with splicing factors was evaluated by immunostaining using specific antibodies (Y12, SC35) in the same cells. We have found that the majority of the RNA transcripts produced from constructs which express intron-containing genes such as β-globin, tropomyosin, and HIV tat are associated with splicing factors. In contrast, RNAs lacking introns, such as βgalactosidase, and adenovirus VAI, are not associated with splicing factors in the nucleus.


1996 ◽  
Vol 7 (10) ◽  
pp. 1559-1572 ◽  
Author(s):  
T Misteli ◽  
D L Spector

HeLa cell nuclei were permeabilized and reconstituted with nuclear extract to identify soluble nuclear factors which play a role in the organization of pre-mRNA splicing factors in the mammalian cell nucleus. Permeabilized nuclei reconstituted with nuclear extract were active in transcription and DNA replication and nuclear speckles containing pre-mRNA splicing factors were maintained over several hours independent of soluble nuclear components. The characteristic rounding up of nuclear speckles in response to inhibition of RNA polymerase II seen in vivo was reproduced in permeabilized cells and was strictly dependent on a catalytic activity present in the nuclear extract. By inhibitor titration experiments and sensitivity to inhibitor 2, this activity was identified as a member of the serine/threonine protein phosphatase 1 family (PP1). Interference with PP1 activity affected the distribution of pre-mRNA splicing factors in transcriptionally active, permeabilized cells, and excess PP1 activity caused increased dephosphorylation of SR proteins in nuclear speckles. These data show that the dynamic reorganization of the mammalian cell nucleus can be studied in permeabilized cells and that PP1 is involved in the rounding up of speckles as well as the overall organization of pre-mRNA splicing factors in the mammalian cell nucleus.


Author(s):  
David L. Spector ◽  
Robert J. Derby

Studies in our laboratory are involved in evaluating the structural and functional organization of the mammalian cell nucleus. Since several major classes (U1, U2, U4/U6, U5) of small nuclear ribonucleoprotein particles (snRNPs) play a crucial role in the processing of pre-mRNA molecules, we have been interested in the localization of these particles within the cell nucleus. Using pre-embedding immunoperoxidase labeling combined with 3-dimensional reconstruction, we have recently shown that nuclear regions enriched in snRNPs form a reticular network within the nucleoplasm which extends between the nucleolar surface and the nuclear envelope. In the present study we were inte rested in extending these nuclear localizations using cell preparation techniques which avoid slow penetration of fixatives, chemical crosslinking of potential antigens and solvent extraction. CHOC 400 cells were cryofixed using a CF 100 ultra rapid cooling device (LifeCell Corp.). After cryofixation cells were molecular distillation dried, vapor osmicated, in filtra ted in 100% Spurr resin in vacuo and polymerized in molds a t 60°C. Using this procedure we were able to evaluate the distribution of snRNPs in resin embedded cells which had not been chemically fixed, incubated in cryoprotectants or extracted with solvents.


1997 ◽  
Vol 136 (1) ◽  
pp. 5-18 ◽  
Author(s):  
Lei Du ◽  
Stephen L. Warren

In the preceding study we found that Sm snRNPs and SerArg (SR) family proteins co-immunoprecipitate with Pol II molecules containing a hyperphosphorylated CTD (Kim et al., 1997). The association between Pol IIo and splicing factors is maintained in the absence of pre-mRNA, and the polymerase need not be transcriptionally engaged (Kim et al., 1997). The latter findings led us to hypothesize that a phosphorylated form of the CTD interacts with pre-mRNA splicing components in vivo. To test this idea, a nested set of CTD-derived proteins was assayed for the ability to alter the nuclear distribution of splicing factors, and to interfere with splicing in vivo. Proteins containing heptapeptides 1-52 (CTD52), 1-32 (CTD32), 1-26 (CTD26), 1-13 (CTD13), 1-6 (CTD6), 1-3 (CTD3), or 1 (CTD1) were expressed in mammalian cells. The CTD-derived proteins become phosphorylated in vivo, and accumulate in the nucleus even though they lack a conventional nuclear localization signal. CTD52 induces a selective reorganization of splicing factors from discrete nuclear domains to the diffuse nucleoplasm, and significantly, it blocks the accumulation of spliced, but not unspliced, human β-globin transcripts. The extent of splicing factor disruption, and the degree of inhibition of splicing, are proportional to the number of heptapeptides added to the protein. The above results indicate a functional interaction between Pol II's CTD and pre-mRNA splicing.


1994 ◽  
Vol 126 (4) ◽  
pp. 877-899 ◽  
Author(s):  
S Huang ◽  
T J Deerinck ◽  
M H Ellisman ◽  
D L Spector

We have studied the distribution of poly(A)+ RNA in the mammalian cell nucleus and its transport through nuclear pores by fluorescence and electron microscopic in situ hybridization. Poly(A)+ RNA was detected in the nucleus as a speckled pattern which includes interchromatin granule clusters and perichromatin fibrils. When cells are fractionated by detergent and salt extraction as well as DNase I digestion, the majority of the nuclear poly(A)+ RNA was found to remain associated with the nonchromatin RNP-enriched fraction of the nucleus. After inhibition of RNA polymerase II transcription for 5-10 h, a stable population of poly(A)+ RNA remained in the nucleus and was reorganized into fewer and larger interchromatin granule clusters along with pre-mRNA splicing factors. This stable population of nuclear RNA may play an important role in nuclear function. Furthermore, we have observed that, in actively transcribing cells, the regions of poly(A)+ RNA which reached the nuclear pore complexes appeared as narrow concentrations of RNA suggesting a limited or directed pathway of movement. All of the observed nuclear pores contained poly(A)+ RNA staining suggesting that they are all capable of exporting RNA. In addition, we have directly visualized, for the first time in mammalian cells, the transport of poly(A)+ RNA through the nuclear pore complexes.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Irina Bogolyubova ◽  
Dmitry Bogolyubov

Interchromatin granule clusters (IGCs) are universal nuclear domains. Their molecular composition and functions were studied in detail in somatic cells. Here, we studied IGCs in the nuclei of early mouse embryos during zygotic gene activation (ZGA). We found that the size of IGCs gradually increases during realization of ZGA events. Using immunocytochemical approaches, we showed that the molecular composition of IGCs is also modified in mouse embryos. The hyperphosphorylated form of RNA polymerase II and the transcription factor TFIID have been revealed in IGCs before the end of ZGA. Association of these factors with IGCs became more noticeable during ZGA realization. Our data suggest that IGCs in early mouse embryos have some functional peculiarities connected most probably with IGC formationde novo. We believe that IGCs in early mouse embryos not only are storage sites of splicing factors but also may be involved in mRNA metabolism and represent the multifunctional nuclear domains.


Sign in / Sign up

Export Citation Format

Share Document