scholarly journals Serine/threonine phosphatase 1 modulates the subnuclear distribution of pre-mRNA splicing factors.

1996 ◽  
Vol 7 (10) ◽  
pp. 1559-1572 ◽  
Author(s):  
T Misteli ◽  
D L Spector

HeLa cell nuclei were permeabilized and reconstituted with nuclear extract to identify soluble nuclear factors which play a role in the organization of pre-mRNA splicing factors in the mammalian cell nucleus. Permeabilized nuclei reconstituted with nuclear extract were active in transcription and DNA replication and nuclear speckles containing pre-mRNA splicing factors were maintained over several hours independent of soluble nuclear components. The characteristic rounding up of nuclear speckles in response to inhibition of RNA polymerase II seen in vivo was reproduced in permeabilized cells and was strictly dependent on a catalytic activity present in the nuclear extract. By inhibitor titration experiments and sensitivity to inhibitor 2, this activity was identified as a member of the serine/threonine protein phosphatase 1 family (PP1). Interference with PP1 activity affected the distribution of pre-mRNA splicing factors in transcriptionally active, permeabilized cells, and excess PP1 activity caused increased dephosphorylation of SR proteins in nuclear speckles. These data show that the dynamic reorganization of the mammalian cell nucleus can be studied in permeabilized cells and that PP1 is involved in the rounding up of speckles as well as the overall organization of pre-mRNA splicing factors in the mammalian cell nucleus.

1998 ◽  
Vol 143 (2) ◽  
pp. 297-307 ◽  
Author(s):  
Tom Misteli ◽  
Javier F. Cáceres ◽  
Jade Q. Clement ◽  
Adrian R. Krainer ◽  
Miles F. Wilkinson ◽  
...  

Expression of most RNA polymerase II transcripts requires the coordinated execution of transcription, splicing, and 3′ processing. We have previously shown that upon transcriptional activation of a gene in vivo, pre-mRNA splicing factors are recruited from nuclear speckles, in which they are concentrated, to sites of transcription (Misteli, T., J.F. Cáceres, and D.L. Spector. 1997. Nature. 387:523–527). This recruitment process appears to spatially coordinate transcription and pre-mRNA splicing within the cell nucleus. Here we have investigated the molecular basis for recruitment by analyzing the recruitment properties of mutant splicing factors. We show that multiple protein domains are required for efficient recruitment of SR proteins from nuclear speckles to nascent RNA. The two types of modular domains found in the splicing factor SF2/ ASF exert distinct functions in this process. In living cells, the RS domain functions in the dissociation of the protein from speckles, and phosphorylation of serine residues in the RS domain is a prerequisite for this event. The RNA binding domains play a role in the association of splicing factors with the target RNA. These observations identify a novel in vivo role for the RS domain of SR proteins and suggest a model in which protein phosphorylation is instrumental for the recruitment of these proteins to active sites of transcription in vivo.


2004 ◽  
Vol 24 (20) ◽  
pp. 9176-9185 ◽  
Author(s):  
Kai-Ti Lin ◽  
Ruei-Min Lu ◽  
Woan-Yuh Tarn

ABSTRACT A growing body of evidence supports the coordination of mRNA synthesis and its subsequent processing events. Nuclear proteins harboring both WW and FF protein interaction modules bind to splicing factors as well as RNA polymerase II and may serve to link transcription with splicing. To understand how WW domains coordinate the assembly of splicing complexes, we used glutathione S-transferase fusions containing WW domains from CA150 or FBP11 in pull-down experiments with HeLa cell nuclear extract. The WW domains associate preferentially with the U2 small nuclear ribonucleoprotein and with splicing factors SF1, U2AF, and components of the SF3 complex. Accordingly, WW domain-associating factors bind to the 3′ part of a pre-mRNA to form a pre-spliceosome-like complex. We performed both in vitro and in vivo splicing assays to explore the role of WW/FF domain-containing proteins in this process. However, although CA150 is associated with the spliceosome, it appears to be dispensable for splicing in vitro. Nevertheless, in vivo depletion of CA150 substantially reduced splicing efficiency of a reporter pre-mRNA. Moreover, overexpression of CA150 fragments containing both WW and FF domains activated splicing and modulated alternative exon selection, probably by facilitating 3′ splice site recognition. Our results suggest an essential role of WW/FF domain-containing factors in pre-mRNA splicing that likely occurs in concert with transcription in vivo.


2002 ◽  
Vol 156 (3) ◽  
pp. 425-436 ◽  
Author(s):  
Paula Sacco-Bubulya ◽  
David L. Spector

To examine the involvement of interchromatin granule clusters (IGCs) in transcription and pre-mRNA splicing in mammalian cell nuclei, the serine-arginine (SR) protein kinase cdc2-like kinase (Clk)/STY was used as a tool to manipulate IGC integrity in vivo. Both immunofluorescence and transmission electron microscopy analyses of cells overexpressing Clk/STY indicate that IGC components are completely redistributed to a diffuse nuclear localization, leaving no residual structure. Conversely, overexpression of a catalytically inactive mutant, Clk/STY(K190R), causes retention of hypophosphorylated SR proteins in nuclear speckles. Our data suggest that the protein–protein interactions responsible for the clustering of interchromatin granules are disrupted when SR proteins are hyperphosphorylated and stabilized when SR proteins are hypophosphorylated. Interestingly, cells without intact IGCs continue to synthesize nascent transcripts. However, both the accumulation of splicing factors at sites of pre-mRNA synthesis as well as pre-mRNA splicing are dramatically reduced, demonstrating that IGC disassembly perturbs coordination between transcription and pre-mRNA splicing in mammalian cell nuclei.


Author(s):  
D.L. Spector ◽  
S. Huang ◽  
S. Kaurin

We have been interested in the organization of RNA polymerase II transcription and pre-mRNA splicing within the cell nucleus. Several models have been proposed for the functional organization of RNA within the eukaryotic nucleus and for the relationship of this organization to the distribution of pre-mRNA splicing factors. One model suggests that RNAs which must be spliced are capable of recruiting splicing factors to the sites of transcription from storage and/or reassembly sites. When one examines the organization of splicing factors in the nucleus in comparison to the sites of chromatin it is clear that splicing factors are not localized in coincidence with heterochromatin (Fig. 1). Instead, they are distributed in a speckled pattern which is composed of both perichromatin fibrils and interchromatin granule clusters. The perichromatin fibrils are distributed on the periphery of heterochromatin and on the periphery of interchromatin granule clusters as well as being diffusely distributed throughout the nucleoplasm. These nuclear regions have been previously shown to represent initial sites of incorporation of 3H-uridine.


1997 ◽  
Vol 136 (1) ◽  
pp. 5-18 ◽  
Author(s):  
Lei Du ◽  
Stephen L. Warren

In the preceding study we found that Sm snRNPs and SerArg (SR) family proteins co-immunoprecipitate with Pol II molecules containing a hyperphosphorylated CTD (Kim et al., 1997). The association between Pol IIo and splicing factors is maintained in the absence of pre-mRNA, and the polymerase need not be transcriptionally engaged (Kim et al., 1997). The latter findings led us to hypothesize that a phosphorylated form of the CTD interacts with pre-mRNA splicing components in vivo. To test this idea, a nested set of CTD-derived proteins was assayed for the ability to alter the nuclear distribution of splicing factors, and to interfere with splicing in vivo. Proteins containing heptapeptides 1-52 (CTD52), 1-32 (CTD32), 1-26 (CTD26), 1-13 (CTD13), 1-6 (CTD6), 1-3 (CTD3), or 1 (CTD1) were expressed in mammalian cells. The CTD-derived proteins become phosphorylated in vivo, and accumulate in the nucleus even though they lack a conventional nuclear localization signal. CTD52 induces a selective reorganization of splicing factors from discrete nuclear domains to the diffuse nucleoplasm, and significantly, it blocks the accumulation of spliced, but not unspliced, human β-globin transcripts. The extent of splicing factor disruption, and the degree of inhibition of splicing, are proportional to the number of heptapeptides added to the protein. The above results indicate a functional interaction between Pol II's CTD and pre-mRNA splicing.


1995 ◽  
Vol 129 (4) ◽  
pp. 899-908 ◽  
Author(s):  
K M Neugebauer ◽  
J A Stolk ◽  
M B Roth

The removal of introns from eukaryotic pre-mRNA occurs in a large ribonucleoprotein complex called the spliceosome. We have generated a monoclonal antibody (mAb 16H3) against four of the family of six SR proteins, known regulators of splice site selection and spliceosome assembly. In addition to the reactive SR proteins, SRp20, SRp40, SRp55, and SRp75, mAb 16H3 also binds approximately 20 distinct nuclear proteins in human, frog, and Drosophila extracts, whereas yeast do not detectably express the epitope. The antigens are shown to be nuclear, nonnucleolar, and concentrated at active sites of RNA polymerase II transcription which suggests their involvement in pre-mRNA processing. Indeed, most of the reactive proteins observed in nuclear extract are detected in spliceosomes (E and/or B complex) assembled in vitro, including the U1 70K component of the U1 small nuclear ribonucleoprotein particle and both subunits of U2AF. Interestingly, the 16H3 epitope was mapped to a 40-amino acid polypeptide composed almost exclusively of arginine alternating with glutamate and aspartate. All of the identified antigens, including the human homolog of yeast Prp22 (HRH1), contain a similar structural element characterized by arginine alternating with serine, glutamate, and/or aspartate. These results indicate that many more spliceosomal components contain such arginine-rich domains. Because it is conserved among metazoans, we propose that the "alternating arginine" domain recognized by mAb 16H3 may represent a common functional element of pre-mRNA splicing factors.


1994 ◽  
Vol 124 (3) ◽  
pp. 249-260 ◽  
Author(s):  
RT O'Keefe ◽  
A Mayeda ◽  
CL Sadowski ◽  
AR Krainer ◽  
DL Spector

We have examined the functional significance of the organization of pre-mRNA splicing factors in a speckled distribution in the mammalian cell nucleus. Upon microinjection into living cells of oligonucleotides or antibodies that inhibit pre-mRNA splicing in vitro, we observed major changes in the organization of splicing factors in vivo. Interchromatin granule clusters became uniform in shape, decreased in number, and increased in both size and content of splicing factors, as measured by immunofluorescence. These changes were transient and the organization of splicing factors returned to their normal distribution by 24 h following microinjection. Microinjection of these oligonucleotides or antibodies also resulted in a reduction of transcription in vivo, but the oligonucleotides did not inhibit transcription in vitro. Control oligonucleotides did not disrupt splicing or transcription in vivo. We propose that the reorganization of splicing factors we observed is the result of the inhibition of splicing in vivo.


2012 ◽  
Vol 23 (18) ◽  
pp. 3694-3706 ◽  
Author(s):  
Vidisha Tripathi ◽  
David Y. Song ◽  
Xinying Zong ◽  
Sergey P. Shevtsov ◽  
Stephen Hearn ◽  
...  

The mammalian cell nucleus is compartmentalized into nonmembranous subnuclear domains that regulate key nuclear functions. Nuclear speckles are subnuclear domains that contain pre-mRNA processing factors and noncoding RNAs. Many of the nuclear speckle constituents work in concert to coordinate multiple steps of gene expression, including transcription, pre-mRNA processing and mRNA transport. The mechanism that regulates the formation and maintenance of nuclear speckles in the interphase nucleus is poorly understood. In the present study, we provide evidence for the involvement of nuclear speckle resident proteins and RNA components in the organization of nuclear speckles. SR-family splicing factors and their binding partner, long noncoding metastasis-associated lung adenocarcinoma transcript 1 RNA, can nucleate the assembly of nuclear speckles in the interphase nucleus. Depletion of SRSF1 in human cells compromises the association of splicing factors to nuclear speckles and influences the levels and activity of other SR proteins. Furthermore, on a stably integrated reporter gene locus, we demonstrate the role of SRSF1 in RNA polymerase II–mediated transcription. Our results suggest that SR proteins mediate the assembly of nuclear speckles and regulate gene expression by influencing both transcriptional and posttranscriptional activities within the cell nucleus.


Sign in / Sign up

Export Citation Format

Share Document