Ab initio determination and Rietveld refinement of the crystal structure of Ba7Cl2F12

1998 ◽  
Vol 13 (3) ◽  
pp. 152-156 ◽  
Author(s):  
B. Es-Sakhi ◽  
P. Gravereau ◽  
C. Fouassier

The structure of Ba7Cl2F12 has been determined ab initio from conventional X-ray powder diffraction data by the “heavy atom” method. The cell is hexagonal (space group P6¯, Z=1), with a=10.6373(2) Å and c=4.1724(2) Å. Refinement of 38 parameters by the Rietveld method, using 278 reflections, leads to cRwp=0.173, cRp=0.135, and RB=0.054. The structure has common characteristics with that of the other BaF2-rich fluorochloride, Ba12Cl5F19. In both phases Ba2+ ions lie in tricapped trigonal prisms formed by nine halide ions, and Cl− ions occupy the center of trigonal prisms of Ba2+ ions. F− ions are located in cationic tetrahedra or square pyramids.

1999 ◽  
Vol 14 (1) ◽  
pp. 10-15 ◽  
Author(s):  
P. Gravereau ◽  
J. P. Chaminade ◽  
B. Manoun ◽  
S. Krimi ◽  
A. El Jazouli

The structure of the oxyphosphate Ni0.50TiO(PO4) has been determined ab initio from conventional X-ray powder diffraction data by the “heavy atom” method. The cell is monoclinic (space group P21/c, Z=4) with a=7.3830(5) Å, b=7.3226(5) Å, c=7.3444(5) Å, and β=120.233(6)°. Refinement of 46 parameters by the Rietveld method, using 645 reflexions, leads to cRwp=0.152, cRp=0.120, and RB=0.043. The structure of Ni0.50TiO(PO4) can be described as a TiOPO4 framework constituted by chains of tilted corner-sharing TiO6 octahedra running parallel to the c axis, crosslinked by phosphate tetrahedra and in which one-half of octahedral cavities created are occupied by Ni atoms. Ti atoms are displaced from the center of octahedra units in alternating long (2.231) and short (1.703 Å) Ti–O bonds along chains.


2021 ◽  
pp. 1-6
Author(s):  
Mariana M. V. M. Souza ◽  
Alex Maza ◽  
Pablo V. Tuza

In the present work, LaNi0.5Ti0.45Co0.05O3, LaNi0.45Co0.05Ti0.5O3, and LaNi0.5Ti0.5O3 perovskites were synthesized by the modified Pechini method. These materials were characterized using X-ray fluorescence, scanning electron microscopy, and powder X-ray diffraction coupled to the Rietveld method. The crystal structure of these materials is orthorhombic, with space group Pbnm (No 62). The unit-cell parameters are a = 5.535(5) Å, b = 5.527(3) Å, c = 7.819(7) Å, V = 239.2(3) Å3, for the LaNi0.5Ti0.45Co0.05O3, a = 5.538(6) Å, b = 5.528(4) Å, c = 7.825(10) Å, V = 239.5(4) Å3, for the LaNi0.45Co0.05Ti0.5O3, and a = 5.540(2) Å, b = 5.5334(15) Å, c = 7.834(3) Å, V = 240.2(1) Å3, for the LaNi0.5Ti0.5O3.


2010 ◽  
Vol 25 (3) ◽  
pp. 247-252 ◽  
Author(s):  
F. Laufek ◽  
J. Návrátil

The crystal structure of skutterudite-related phase IrGe1.5Se1.5 has been refined by the Rietveld method from laboratory X-ray powder diffraction data. Refined crystallographic data for IrGe1.5Se1.5 are a=12.0890(2) Å, c=14.8796(3) Å, V=1883.23(6) Å3, space group R3 (No. 148), Z=24, and Dc=8.87 g/cm3. Its crystal structure can be derived from the ideal skutterudite structure (CoAs3), where Se and Ge atoms are ordered in layers perpendicular to the [111] direction of the original skutterudite cell. Weak distortions of the anion and cation sublattices were also observed.


2009 ◽  
Vol 24 (3) ◽  
pp. 185-190 ◽  
Author(s):  
A. Le Bail

θ-KAlF4 is a new nanosized potassium tetrafluoroaluminate metastable polymorph (13×18×55 nm3). The crystal structure is solved ab initio from X-ray powder diffraction data in direct space [orthorhombic unit cell with a=8.3242(3) Å, b=7.2502(3) Å, c=11.8875(4) Å, V=717.44(5) Å3, Z=8, and space group Pnma]. This new structure type, unique in the whole AIMIIIF4 family, is related to the fluorite structure and consists of AlF6 octahedra linked via a common edge forming a bioctahedral motif which is trans-connected through the corner-shared fluorine, resulting in the formation of infinite ladderlike double file of octahedra ([Al2F8]2−)n running along the b axis.


1993 ◽  
Vol 8 (3) ◽  
pp. 175-179
Author(s):  
J. Estienne ◽  
O. Cerclier ◽  
J. J. Rosenberg

Indexed X-ray powder diffraction data are reported for two organic salts with carbon rings having two quaternary nitrogens: diazonia-6,9 dispiro [5.2.5.2] hexadecane and diazonia-6,9 dispiro [5.2.5.3] heptadecane diiodides. For these compounds, which give solid electrolytes when associated with AgI, powder diffraction diagrams calculated by the Rietveld method from single crystal structure determinations are presented and are compared to the experimental diffraction data.


2009 ◽  
Vol 24 (4) ◽  
pp. 351-361 ◽  
Author(s):  
James A. Kaduk

The crystal structure of the mullite in a commercial material was refined by the Rietveld method using laboratory X-ray powder diffraction data. In this one refinement, most of the common challenges—including variable stoichiometry (partially occupied sites), multiple impurity phases, amorphous material, constraints, restraints, correlation, anisotropic profiles, microabsorption, and contamination during grinding—are encountered and the thought processes during the refinement are described step-by-step. Interpretation of the refinements includes bulk chemical analysis, chemical composition of the mullite, assessment of the geometry, bond valence sums, the displacement coefficients, crystallite size and microstrain, comparison to similar structures to assess chemical reasonableness, and the nature of the amorphous phase.


1998 ◽  
Vol 54 (5) ◽  
pp. 547-557 ◽  
Author(s):  
R. L. Withers ◽  
J. G. Thompson ◽  
A. Melnitchenko ◽  
S. R. Palethorpe

The crystal structure of a new cubic cristobalite-related sodium aluminosilicate Na1.45Al1.45Si0.55O4 [P213, a = 14.553 (1) Å] has been modelled using a modulation wave approach and the model tested against X-ray powder diffraction data using the Rietveld method. Owing to there being 64 independent positional parameters and eight independent Na sites, refinement of the tetrahedral framework atom positions and Na occupancies was not possible. The framework was modelled successfully in terms of q 1 = 1\over 4〈020〉_p^*-type (p = parent) modulation waves with the requirement that the MO4 (M = Al0.725Si0.275) tetrahedra be as close to regular as possible. Na/vacancy ordering was modelled successfully in terms of q 2 = 1\over 4〈220〉_p^* modulation waves. Only the Na-atom positions were refined. The significance of this unique modulated cubic cristobalite-related structure and the possible insight it provides to understanding β-cristobalite are discussed.


2002 ◽  
Vol 17 (5) ◽  
pp. 1112-1117 ◽  
Author(s):  
M. Avdeev ◽  
M. P. Seabra ◽  
V. M. Ferreira

The crystal structure of microwave dielectric ceramics in the (1 − x)La(Mg0.5Ti0.5)O3 (LMT)–xBaTiO3 (BT) (0 ≤ x ≤ 0.9) system has been refined by Rietveld method using x-ray powder diffraction data. LMT and BT were found to form a solid solution in the whole compositional range. The increase of BaTiO3 content results in the following sequence of structure transformations of those solid solutions: P21/n (a−a−c+, B-site ordered) → Pbnm (a−a−c+) → I4/mcm (a0a0c−) → Pm3m (a0a0a0). These structural changes are related to the disappearance of B-site cation ordering (x > 0.1), in-phase tilting (x > 0.3), and antiphase tilting (x > 0.5), respectively.


Sign in / Sign up

Export Citation Format

Share Document