Use of TALP with laboratory powder diffraction data from 2D detectors

2013 ◽  
Vol 28 (S2) ◽  
pp. S481-S490
Author(s):  
Oriol Vallcorba ◽  
Anna Crespi ◽  
Jordi Rius ◽  
Carles Miravitlles

The viability of the direct-space strategy TALP (Vallcorba et al., 2012b) to solve crystal structures of molecular compounds from laboratory powder diffraction data is shown. The procedure exploits the accurate metric refined from a ‘Bragg-Brentano’ powder pattern to extract later the intensity data from a second ‘texture-free’ powder pattern with the DAJUST software (Vallcorba et al., 2012a). The experimental setup for collecting this second pattern consists of a circularly collimated X-ray beam and a 2D detector. The sample is placed between two thin Mylar® foils, which reduces or even eliminates preferred orientation. With the combination of the DAJUST and TALP software a preliminary but rigorous structural study of organic compounds can be carried out at the laboratory level. In addition, the time-consuming filling of capillaries with diameters thinner than 0.3mm is avoided.

2018 ◽  
Vol 33 (2) ◽  
pp. 80-87 ◽  
Author(s):  
Takashi Ida ◽  
Shoki Ono ◽  
Daiki Hattan ◽  
Takehiro Yoshida ◽  
Yoshinobu Takatsu ◽  
...  

A method to remove small CuKβ peaks and step structures caused by NiK-edge absorption as well as CuKα2 sub-peaks from powder diffraction intensity data measured with Cu-target X-ray source and Ni-foil filter is proposed. The method is based on deconvolution–convolution treatment applying scale transform of abscissa, Fourier transform, and a realistic spectroscopic model for the source X-ray. The validity of the method has been tested by analysis of the powder diffraction data of a standard LaB6 powder (NIST SRM660a) sample, collected with the combination of CuKα X-ray source, Ni-foil Kβ filter, flat powder specimen and one-dimensional Si strip detector. The diffraction intensity data treated with the method have certainly shown background intensity profile without CuKβ peaks and NiK-edge step structures.


1999 ◽  
Vol 14 (4) ◽  
pp. 305-307 ◽  
Author(s):  
Rodney T. Tettenhorst ◽  
Roger E. Gerkin

Crystal and X-ray powder diffraction data are presented for the title compound. The powder pattern was indexed and refined on a monoclinic cell with a=17.356(6) Å, b=3.528(1) Å, c=11.285(1) Å, β=94.23(2) Å. The cell volume and Dm=1.772 g/cm3 give Z=4. The space group could not be determined with certainty. The planes of the urate anions likely are stacked parallel or nearly parallel to (010).


1997 ◽  
Vol 12 (2) ◽  
pp. 76-80 ◽  
Author(s):  
A. El-Yacoubi ◽  
R. Brochu ◽  
A. Serghini ◽  
M. Louër ◽  
M. Alami Talbi ◽  
...  

A new mixed lead thorium phosphate, Pb0.5Th2(PO4)3, has been isolated in the system PbO–ThO2–P2O5. Its crystal structure (monoclinic symmetry, a=17.459(1) Å, b=6.8451(4) Å, c=8.1438(5) Å, β=101.247(5)°, space group C2/c) has been determined from conventional monochromatic X-ray powder diffraction data. The structure is related to the MITh2(PO4)3 structure type. Lead atoms are located in the channels parallel to the c axis, out of the twofold axis for 0.97 Å, and are statistically distributed on a quarter of crystallographic positions. The thermal stability of this material is greater than that of the monazite-type compound PbTh(PO4)2.


2020 ◽  
Vol 35 (2) ◽  
pp. 124-128
Author(s):  
Alicja Rafalska-Łasocha ◽  
Michał Duda ◽  
Wiesław Łasocha

X-ray powder diffraction data for new metal-organic compounds: tetrakis(3-ethylanilinium) octamolybdate Mo8O26(C8H12N)4 [a = 10.682(4), b = 16.589(5), c = 7.307(2) Å, α = 92.79(2)°, β = 97.99(3)°, γ = 103.89(3)°, V = 1240.27 Å3, Z = 1, space group P−1]; tetrakis(3-ethylanilinium) octamolybdate tetrahydrate Mo8O26(C8H12N)4·(H2O)4 [a = 18.801(7), b = 17.943(6), c = 7.334(3) Å, β = 98.50(5)°, V = 2446.99 Å3, Z = 2, space group P21/m] and bis(3-ethylanilinium) pentamolybdate Mo5O16(C8H12N)2 [a = 34.643(6), b = 5.5796(7), c = 14.200(3) Å, β = 96.20(2)°, V = 2728.69 Å3, Z = 4, space group I2/a] are reported in this paper. The investigated compounds were synthesized from molybdic acid and 3-ethylaniline in acidic solution. In the first two cases, we obtained octamolybdates, while the last compound crystallized as pentamolybdate.


2011 ◽  
Vol 26 (4) ◽  
pp. 337-345
Author(s):  
E. Olszewska ◽  
B. Tarasiuk ◽  
S. Pikus

N-derivatives of 4-chloro-3,5-dimethylphenoxyacetamide—2-(4-chloro-3,5-dimethylphenoxy)-N-(4-fluorophenyl)acetamide, 2-(4-chloro-3,5-dimethylphenoxy)-N-(3-chloro-4-fluorophenyl) acetamide, 2-(4-chloro-3,5-dimethylphenoxy)-N-[4-chloro-3-(trifluoromethyl)phenyl] acetamide, 2-(4-chloro-3,5-dimethylphenoxy)-N-[3-chloro-4-methylphenyl]acetamide, 2-(4-chloro-3,5-dimethylphenoxy)-N-(2,4,6-tribromophenyl) acetamide, 2-(4-chloro-3,5-dimethylphenoxy)-N-pyridin-2-ylacetamide, 1-[(4-chloro-3,5-dimethylphenoxy)acetyl]-4-methylpiperazine, and 1-benzyl-4-[(4-chloro-3,5-dimethylphenoxy)acetyl]piperazine—have been characterized by X-ray powder diffraction. These organic compounds are potential pesticides. Experimental 2θ peak positions, relative peak intensities, values of d and Miller indices, and unit-cell parameters are presented.


2008 ◽  
Vol 23 (4) ◽  
pp. 338-349 ◽  
Author(s):  
E. Olszewska ◽  
S. Pikus ◽  
B. Tarasiuk

Four new derivatives of N-aryl-2,4-dichlorophenoxyacetamide, 2-(2,4-dichlorophenoxy)-N-(4-fluorophenyl)acetamide, N-(4-bromophenyl)-2-(2,4-dichlorophenoxy)acetamide, N-[4-chloro-3-(trifluoromethyl)phenyl]-2-(2,4-dichlorophenoxy)acetamide, and N-(3-chloro-4-fluorophenyl)-2-(2,4-dichlorophenoxy)acetamide, and two of N-alkyl-2,4-dichlorophenoxyacetamide, N-dodecyl-2,4-dichlorophenoxy-acetamide and 2-(2,4-dichlorophenoxy)-N-hexadecylacetamide, have been characterized by X-ray powder diffraction. These organic compounds are potential pesticides. Experimental 2θ peaks positions, relative peak intensities, values of d and Miller indices, and unit cell parameters are presented.


2017 ◽  
Vol 32 (S1) ◽  
pp. S172-S178 ◽  
Author(s):  
Takashi Ida ◽  
Kento Wachi ◽  
Daiki Hattan ◽  
Shoki Ono ◽  
Shoji Tachiki ◽  
...  

A powder diffraction measurement system constructed on a beam-line BL5S2 at Aichi Synchrotron Radiation Center in Seto, Japan, has been modified for extensive use of two-dimensional (2D) X-ray detectors. Four flat 2D detectors are currently mounted on the movable stages on supporting rods radially attached to the 2Θ-wheel of the goniometer with the interval of 25°. The 2D powder diffraction intensity data are reduced to conventional 1D format of powder diffraction data by the method based on averaging of the pixel intensities with geometrical corrections, which also enables evaluation of standard uncertainties about the reduced intensity data. The 1D powder diffraction data of a 0.1 mm-capillary LaB6 (NIST SRM660b) sample obtained at the camera length of 340 mm have shown almost symmetric peak profile with slight asymmetry simulated by a beta-distribution profile function.


2014 ◽  
Vol 29 (4) ◽  
pp. 393-395
Author(s):  
Bing He ◽  
Ming Qin ◽  
Degui Li ◽  
Liuqing Liang ◽  
Lingmin Zeng

A new quaternary compound PrAlFeNi3 was synthesized and studied by means of X-ray powder diffraction technique. The powder pattern of PrAlFeNi3 was indexed and refined, giving a hexagonal structure, space group P6/mmm (No. 191) with the CaCu5 structure type, a = 5.1132(2) Å, c = 4.0737(1) Å, V = 92.19 Å3, Z = 1, ρx = 7.20 g cm−3, F30 = 173.61 (0.0054, 32) and RIR = 0.77.


2016 ◽  
Vol 31 (3) ◽  
pp. 240-241
Author(s):  
Liuqing Liang ◽  
Chenzhong Jia ◽  
Degui Li ◽  
Lingmin Zeng ◽  
RanCheng Mo

A new quaternary compound AlCeCo2Ni2 was synthesized and studied by means of X-ray powder diffraction technique. The powder pattern of AlCeCo2Ni2 was indexed and refined, giving a hexagonal structure, space group P6/mmm (No. 191) with the CaCu5 structure type. a = 4.9242(2) Å, c = 4.0524(1) Å, V = 85.1 Å3, Z = 1, ρx = 7.85 g cm−3, F30 = 130.2(0.010, 30), and RIR = 0.71(2).


Sign in / Sign up

Export Citation Format

Share Document