Crystal Structural Study of Ho-doped Ceria Using X-ray Powder Diffraction Data

2013 ◽  
Vol 31 (1-2) ◽  
pp. 254-259 ◽  
Author(s):  
Yong-Il Kim ◽  
Min Ku Jeon ◽  
Won-Bin Im
2013 ◽  
Vol 28 (S2) ◽  
pp. S481-S490
Author(s):  
Oriol Vallcorba ◽  
Anna Crespi ◽  
Jordi Rius ◽  
Carles Miravitlles

The viability of the direct-space strategy TALP (Vallcorba et al., 2012b) to solve crystal structures of molecular compounds from laboratory powder diffraction data is shown. The procedure exploits the accurate metric refined from a ‘Bragg-Brentano’ powder pattern to extract later the intensity data from a second ‘texture-free’ powder pattern with the DAJUST software (Vallcorba et al., 2012a). The experimental setup for collecting this second pattern consists of a circularly collimated X-ray beam and a 2D detector. The sample is placed between two thin Mylar® foils, which reduces or even eliminates preferred orientation. With the combination of the DAJUST and TALP software a preliminary but rigorous structural study of organic compounds can be carried out at the laboratory level. In addition, the time-consuming filling of capillaries with diameters thinner than 0.3mm is avoided.


1997 ◽  
Vol 12 (2) ◽  
pp. 76-80 ◽  
Author(s):  
A. El-Yacoubi ◽  
R. Brochu ◽  
A. Serghini ◽  
M. Louër ◽  
M. Alami Talbi ◽  
...  

A new mixed lead thorium phosphate, Pb0.5Th2(PO4)3, has been isolated in the system PbO–ThO2–P2O5. Its crystal structure (monoclinic symmetry, a=17.459(1) Å, b=6.8451(4) Å, c=8.1438(5) Å, β=101.247(5)°, space group C2/c) has been determined from conventional monochromatic X-ray powder diffraction data. The structure is related to the MITh2(PO4)3 structure type. Lead atoms are located in the channels parallel to the c axis, out of the twofold axis for 0.97 Å, and are statistically distributed on a quarter of crystallographic positions. The thermal stability of this material is greater than that of the monazite-type compound PbTh(PO4)2.


1998 ◽  
Vol 13 (4) ◽  
pp. 196-201 ◽  
Author(s):  
J. A. Henao ◽  
J. M. Delgado ◽  
M. Quintero

The room temperature X-ray powder diffraction pattern of Fe2GeSe4, a II2 □ IV VI4 semiconducting compound, has been recorded and evaluated. This material was found to be orthorhombic, a=13.069(1), b=7.559(1), c=6.2037(6) Å, V=612.83(9) Å3, Z=4, Dx=5.42 gcm−3. The structure refinement carried out using the Rietveld method indicated that this material crystallizes in space group Pnma (No. 62) with an olivine type of structure. The refinement of 33 parameters led to RWP=15.3%, RP=10.2% for 5251 step intensities and RB=9.44% and RF=9.36% for 913 reflections.


2003 ◽  
Vol 12 (3) ◽  
pp. 310-314
Author(s):  
Chen Jian-Rong ◽  
Gu Yuan-Xin ◽  
Fan Hai-Fu

2010 ◽  
Vol 25 (3) ◽  
pp. 247-252 ◽  
Author(s):  
F. Laufek ◽  
J. Návrátil

The crystal structure of skutterudite-related phase IrGe1.5Se1.5 has been refined by the Rietveld method from laboratory X-ray powder diffraction data. Refined crystallographic data for IrGe1.5Se1.5 are a=12.0890(2) Å, c=14.8796(3) Å, V=1883.23(6) Å3, space group R3 (No. 148), Z=24, and Dc=8.87 g/cm3. Its crystal structure can be derived from the ideal skutterudite structure (CoAs3), where Se and Ge atoms are ordered in layers perpendicular to the [111] direction of the original skutterudite cell. Weak distortions of the anion and cation sublattices were also observed.


1996 ◽  
Vol 11 (1) ◽  
pp. 26-27 ◽  
Author(s):  
Irena Georgieva ◽  
Ivan Ivanov ◽  
Ognyan Petrov

A new compound—Ba3MnSi2O8 in the system BaO–MnO–SiO2 was synthesized and studied by powder X-ray diffraction. The compound is hexagonal, space group—P6/mmm, a=5.67077 Å, c=7.30529 Å, Z=1, Dx=5.353. The obtained powder X-ray diffractometry (XRD) data were interpreted by the Powder Data Interpretation Package.


Author(s):  
Robert E. Dinnebier ◽  
Hanne Nuss ◽  
Martin Jansen

AbstractThe crystal structures of solvent-free lithium, sodium, rubidium, and cesium squarates have been determined from high resolution synchrotron and X-ray laboratory powder patterns. Crystallographic data at room temperature of Li


Sign in / Sign up

Export Citation Format

Share Document