crystal structural
Recently Published Documents


TOTAL DOCUMENTS

547
(FIVE YEARS 110)

H-INDEX

36
(FIVE YEARS 6)

2022 ◽  
Vol 4 (1) ◽  
pp. 1-10
Author(s):  
Panigrahi M.K ◽  

The aim of the work is to use industrial waste as resource materials for formulating useful product for society. Materials are prepared using Fly ash as main ingredient through sintered process via solid state route. Different materials are prepared using various sintering temperature. The crystal structural and phases are explored by XRD analysis. Mulite phase are investigated, which is indicated the insulating properties of the materials. Surface topography of the prepared materials is analyzed by FESEM characterization. EDS analysis is also done during the FESEM characterization and is assessed the various chemical compositions. Identification of different chemical groups in the processed Fly Ash is carried out by FTIR analysis. Highest electrical resistivity is estimated and is found to be 35.1 MΩ, which indicates the very good insulating property.


Author(s):  
Chunli Jiang ◽  
Qianqian Luo ◽  
Chunhua Luo ◽  
Hechun Lin ◽  
Hui Peng

Abstract We report here the synthesis of hybrid manganese halide crystals, (C4H7N2)MnCl3·H2O and (C4H7N2)2MnCl4, by using the same organic ligand 2-methylimidazole. Upon heating treatment, the red-emissive (C4H7N2)MnCl3·H2O crystal is structurally transformed into green-emissive (C4H7N2)2MnCl4 crystal in situ. The crystal structural analysis reveals that the [MnCl5·H2O]3- octahedra chains decompose into mono [MnCl4]2- tetrahedra, accompanied by the departure of H2O molecules. Upon cooling in air or water vapor, the crystal structure and luminescence of (C4H7N2)2MnCl4 are transformed to those of (C4H7N2)MnCl3·H2O. The in situ conversion of luminescence between (C4H7N2)MnCl3·H2O and (C4H7N2)2MnCl4 provides new insight into the potential application of hybrid manganese halides.


Author(s):  
Songtao Dong ◽  
Xiaoyun Jin ◽  
Junlin Wei ◽  
Hongyan Wu

In this work, a novel heterojunction based on ZnSnO3/ZnO nanofibers was prepared using electrospinning method. The crystal, structural and surface compositional properties of sample based on ZnSnO3 and ZnSnO3/ZnO composite nanofibers were investigated by X-ray diffractometer (XRD), Scanning electron microscope (SEM), X-ray photoelectron spectrometer (XPS) and Brunauer-Emmett-Teller (BET). Compared to pure ZnSnO3 nanofibers, the ZnSnO3/ZnO heterostructure nanofibers display high sensitivity and selectivity response with fast response towards ethanol gas at low operational temperature. The sensitivity response of sensor based on ZnSnO3/ZnO composite nanofibers were 19.6 towards 50 ppm ethanol gas at 225°C, which was about 1.5 times superior than that of pure ZnSnO3 nanofibers, which can be owed mainly to the presence of oxygen vacancies and the synergistic effect between ZnSnO3 and ZnO.


2022 ◽  
Author(s):  
Minggang Zhao ◽  
Ru-Ru He ◽  
Tingting Xue ◽  
Jian-ping Ma ◽  
Wenjun Zheng

Several of alkali metal complexes with 1,2-diaza-4-phospholide ligands were prepared and characterized by X-ray single crystal structural analysis and the NMR spectroscopy. Their structures showed varied coordination motifs: i) A...


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 51
Author(s):  
Natale Perchiazzi ◽  
Daniela Mauro ◽  
Pietro Vignola ◽  
Federica Zaccarini ◽  
Knut Eldjarn

The new mineral zoisite-(Pb), ideally CaPbAl3(SiO4)(Si2O7)O(OH), was discovered in a sample from the Jakobsberg manganese-iron oxide deposit, Värmland, Sweden. Zoisite-(Pb) is found as pale pink subhedral prisms elongated on [010], up to 0.3 mm in size, associated with calcite, celsian, diopside, grossular, hancockite, hyalophane, native lead, phlogopite, and vesuvianite. Associated feldspars show one of the highest PbO contents (~7–8 wt%) found in nature. Electron-microprobe analysis of zoisite-(Pb) point to the empirical formula (Ca1.09Pb0.86Mn2+0.01Na0.01)∑1.97(Al2.88Fe3+0.10Mn3+0.04)∑3.02Si3.00O12(OH)1.00. The eight strongest diffraction lines [dobs, Iobs, (hkl)] are 8.63 s (101), 8.11 mw (200), 4.895 m (011), 4.210 m (211), 3.660 s (112, 311), 3.097 mw (312), 2.900 s (013), and 2.725 m (511). Zoisite-(Pb) is isostructural with zoisite and its crystal structure was refined up to R1 = 0.0213 for 2013 reflections with Fo > 4σ(Fo). Pb shows a stereochemically active lone pair leading to a lopsided distribution of its coordinating oxygens. A full chemical and Raman characterization of zoisite-(Pb) and of the Pb-bearing epidote hancockite is reported, together with an improved crystal structural model of hancockite, refined up to R1 = 0.0254 for 2041 reflections with Fo > 4σ(Fo). The effects of the incorporation of Pb in the crystal structure of zoisite-(Pb), hancockite, and related synthetic and natural phases are described and discussed.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 193
Author(s):  
Xinli Wang ◽  
Xiang Lin ◽  
Renfu Li ◽  
Zexin Wang ◽  
Wei Liu ◽  
...  

In this work, we synthesized a pair of positional isomers by attaching a small electron-donating pyrrolidinyl group at ortho- and para-positions of a conjugated core. These isomers exhibited totally different fluorescent properties. PDB2 exhibited obvious aggregation-induced emission properties. In contrast, PDB4 showed the traditional aggregation-caused quenching effect. Their different fluorescent properties were investigated by absorption spectroscopy, fluorescence spectroscopy, density functional theory calculations and single-crystal structural analysis. These results indicated that the substituent position of the pyrrolidinyl groups affects the twisted degree of the isomers, which further induces different molecular packing modes, thus resulting in different fluorescent properties of these two isomers. This molecular design concept provided a new accurate strategy for designing new aggregation-induced emission luminogens.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Kai-Long Zhong ◽  
Jing Quan ◽  
Xian-Xiao Pan ◽  
Wei Song ◽  
Bing-Feng Li

Abstract A new cadmium(II)-based coordination polymer [Cd3(FcCOO)6(4,4′-bipy)(H2O)2] n (FcCOO = ferrocenecarboxylato and 4,4′-bipy = 4,4′-bipyridine) has been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction. The results of a crystal structural analysis has revealed that the title compound consists of two crystallographically unique CdII centers, one in a general position with a five-coordinated and one on an inversion center with a six-coordinated environment. The CdII centers are connected by FcCOO− units to form a metal carboxylate oxygen chain extending parallel to the [100] direction while the 4,4′-bipy ligands further act as bridging linkers of the CdII centers resulting in a layered polymer. In addition, an X-ray powder diffraction and thermal gravimetric analysis and a cyclo-voltammetric characterization of the complex have also been carried out.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Lei Gao ◽  
Xianrui Zhang

Drug cocrystals and salts have promising applications for modulating the physicochemical properties and solubility of pharmaceuticals. In this study, a cocrystal and two salts of febuxostat (FEB) with pyridine nitrogen coformers, including 4, 4′-bipyridine (BIP), 3-aminopyridine (3AP) and 4-hydroxypyridine (4HP), were designed to improve the solubility of FEB. The single-crystal structures were elucidated, and their physical and chemical properties were investigated by IR, PXRD, and DSC. In addition, drug-related properties, including the solubility and powder dissolution rate were assessed. The solubility and powder dissolution studies showed that the FEB-BIP cocrystal and FEB-3AP salt have superior dissolution compared to FEB.


2021 ◽  
pp. 163092
Author(s):  
Aleksei S. Komlev ◽  
Dmitriy Y. Karpenkov ◽  
Radel R. Gimaev ◽  
Alisa Chirkova ◽  
Ayaka Akiyama ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jin Young Koo ◽  
Changmin Lee ◽  
Taiha Joo ◽  
Hee Cheul Choi

AbstractBismuth-based organic frameworks (BiOFs) can display interesting phosphorescent properties, but the relationship between structure and optical activity remains underexplored. The structure-dependent phosphorescence properties in the BiOFs are investigated using different multidentate ligands. In-depth analysis of the luminescence properties confirms that the densely packed framework shows long-lasting phosphorescence at room temperature, owing to an efficient electron-hole separation. The combination of spectroscopic analysis and single-crystal structural analysis provides important insights into the emission control through BiOFs structural change, which can be a useful strategy for modulating the optical properties of various metal organic frameworks. Furthermore, taking the advantage of long-lasting phosphorescence, the potential usage as an eco-friendly photocatalyst is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document