Cereal and wool production in the Esperance Sandplain area of Western Australia: The need for a systems approach for sustainable agriculture

1993 ◽  
Vol 8 (2) ◽  
pp. 85-90
Author(s):  
Murray Fulton

AbstractThe problems facing farmers in the Esperance Sandplain region of Western Australia—salinity, herbicide resistance, wind erosion, and plant disease—are highly interrelated. Unless the biological, economic and social aspects of the problems are examined in an integrated way, no sustainable system will be found. Similarly, agricultural teaching and research must become much more integrated if they are to address agricultural and environmental problems satisfactorily. This will require changes in the structure of university and research institutions and in the rewards for research and teaching.

1985 ◽  
Vol 15 (1) ◽  
pp. 45-55
Author(s):  
Kan Chan ◽  
Paul Appasamy ◽  
Michael Donahue ◽  
John Reuss

1992 ◽  
Vol 32 (7) ◽  
pp. 857 ◽  
Author(s):  
DJ McFarlane ◽  
JW Cox

Excess water in duplex soils can be removed by drains. In soils in which drainage is impractical, some success has been obtained by deep ripping and by gypsum amendment. These practices can increase profile storage or drainage. Interceptor drains are suitable for duplex soils with slopes of more than about 1.5%. On more gentle slopes, relief drains are used to remove excess water. Subsurface tube and mole drains have been used successfully to drain cereal crops in Victoria, but in Western Australia open drains are preferred because they can carry storm runoff as well as seepage waters. The greatest cost of open drains is the land removed from production. Over 35% of the rain falling during the growing season has been removed by drains in Victoria and Western Australia in wet years. Drainage was almost entirely downslope of monitored interceptor drains in Western Australia, which is not predicted from the theory. Simulation of water levels between drains and of drain flows using the DRAINMOD model indicated significant, preferred pathways for water flow to drains. The pathways explain the predominantly downslope effect of interceptor drains and the wide drain spacings which can be used. Deep ripping and the incorporation of gypsum can reduce waterlogging in some soils, but has had no effect in several others. The effect of deep ripping on recharge is unclear. Drains may decrease groundwater recharge, water and wind erosion, and soil structure decline. Their effect on phosphate export from catchments is unclear.


2010 ◽  
Vol 1 (3-4) ◽  
pp. 129-141 ◽  
Author(s):  
R.J. Harper ◽  
R.J. Gilkes ◽  
M.J. Hill ◽  
D.J. Carter

Author(s):  
Andleeb Zehra ◽  
Ashutosh Rai ◽  
Sushil Kumar Singh ◽  
Mohd Aamir ◽  
Waqar Akhtar Ansari ◽  
...  

2020 ◽  
Vol 71 (5) ◽  
pp. 491 ◽  
Author(s):  
Martin Harries ◽  
Ken C. Flower ◽  
Craig A. Scanlan ◽  
Michael T. Rose ◽  
Michael Renton

Six years of survey data taken from 184 paddocks spanning 14 million ha of land used for crop and pasture production in south-west Western Australia were used to assess weed populations, herbicide resistance, integrated weed management (IWM) actions and herbicide use patterns in a dryland agricultural system. Key findings were that weed density within crops was low, with 72% of cropping paddocks containing fewer than 10 grass weeds/m2 at anthesis. Weed density and herbicide resistance were not correlated, despite the most abundant grass weed species (annual ryegrass, Lolium rigidum Gaudin) testing positive for resistance to at least one herbicide chemistry in 92% of monitored paddocks. A wide range of herbicides were used (369 unique combinations) suggesting that the diversity of herbicide modes of action may be beneficial for reducing further development of herbicide resistance. However, there was a heavy reliance on glyphosate, the most commonly applied active ingredient. Of concern, in respect to the evolution of glyphosate resistant weeds, was that 45% of glyphosate applications to canola were applied as a single active ingredient and area sown to canola in Western Australia expanded from 0.4 to 1.4 million hectares from 2005 to 2015. In order to minimise the weed seed bank within crops, pastures were used infrequently in some regions and in 50% of cases pastures were actively managed to reduce weed seed set, by applying a non-selective herbicide in spring. The use of non-selective herbicides in this manner also kills pasture plants, consequently self-regenerating pastures were sparse and contained few legumes where cropping intensity was high. Overall, the study indicated that land use selection and utilisation of associated weed management actions were being used successfully to control weeds within the survey area. However, to successfully manage herbicide resistant weeds land use has become less diverse, with pastures utilised less and crops with efficacious weed control options utilised more. Further consideration needs to be given to the impacts of these changes in land use on other production factors, such as soil nutrient status and plant pathogens to assess sustainability of these weed management practices in a wider context.


2014 ◽  
Vol 126 ◽  
pp. 76-86 ◽  
Author(s):  
S. Dogliotti ◽  
M.C. García ◽  
S. Peluffo ◽  
J.P. Dieste ◽  
A.J. Pedemonte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document