storm runoff
Recently Published Documents


TOTAL DOCUMENTS

377
(FIVE YEARS 37)

H-INDEX

42
(FIVE YEARS 3)

2021 ◽  
Author(s):  
◽  
Omar Ahmed Alsager

<p>This work set out to determine the concentrations of dissolved copper (Cu), zinc (Zn) and iron (Fe) during base and wet weather flow at streams throughout the Wellington region. The secondary objective was to investigate possible sources of heavy metals during rainfall events. The concentrations of the three dissolved trace metals Cu, Zn and Fe were measured at 13 sites on five streams during base flow conditions and during runoff events (wet weather flow) in the Wellington region between January and July 2011. More than 240 base flow and 100 wet weather flow samples have been analysed for the three dissolved metals. Additionally, rainfall, roof runoff and paved surface runoff samples have been collected and analysed. The analysis was performed by Flame Atomic Absorption Spectroscopy (FAAS). A pre-concentration procedure using Chelex-100, a chelating polymeric resin bead, was developed and successfully used to enhance the concentrations of dissolved Cu and dissolved Zn. The recorded data were compared to the recommended long-term (chronic) toxicity triggers; the Australian and New Zealand Environment and Conservation Council freshwater toxicity trigger values (ANZECC (2000) TV) for dissolved Cu and Zn, and the Canadian trigger value (CTV) for dissolved Fe. Additionally, the concentrations of dissolved Cu and Zn in storm water samples were compared against the recommended short-term (acute) toxicity triggers, the United States Environmental Protection Agency (USEPA 2006) Criteria Maximum Concentrations (CMC). The medians of dissolved heavy metals concentrations; Cu, Zn, and Fe, all of which are potentially toxic to aquatic life, exceeded the long-term (chronic) toxicity guidelines at one of the studied sites for Fe, nine sites (69%) for Cu and 10 sites (77%) for Zn in base flow conditions. Comparison of base flow monitoring data to previous reports showed that the concentrations of the studied metals have increased over the last five years. Storm water (wet weather flow conditions) contained elevated levels of dissolved heavy metals in comparison to base flow concentrations which is consistent with what has been reported previously. Dissolved Cu and Zn exceeded the acute toxicity criteria at sites of suburban residential areas. The median of dissolved Fe concentration exceeded the sustained toxicity exposure trigger at eight of the studied sites (61%). Distinct catchment type contaminant concentrations (dissolved Cu and Zn) were observed during storm runoff events with a concentration pattern of suburban residential > commercial > light residential > rural catchment. Dissolved Fe exhibited a similar pattern but in this case the concentration in rural catchments was higher than in light residential catchments. These observations were attributed to the high traffic of vehicles passing nearby the area; accumulated particulate materials; and corrosion of materials containing heavy metals, such as galvanised and copper roofs, gutter systems and building construction materials. The strongest and most obvious first flush effect was observed with dissolved Cu followed by Zn where the phenomenon was observed in six storm runoff events for Cu and five events for Zn. The first flush effect of dissolved Fe was present in three out of eight storm runoff events. The concentrations of dissolved metals were of the same order of magnitude as those previously reported for the Wellington region, but this work recorded the highest expected concentrations, particularly, for dissolved Fe. The reported data are consistent with data sets from other New Zealand regions. The investigation of possible sources of dissolved heavy metals in storm runoff samples showed that rainfall water contained markedly elevated concentrations of dissolved Zn and smaller Cu concentrations, 0.04-0.075 and 0.0018-0.01 mg/L respectively, in comparison to the ANZECC (2000) TVs, 0.008 and 0.0014 mg/L respectively. The concentrations of dissolved Fe were below the CTV level of 0.3 mg/L. Most studies conducted in New Zealand did not take into account the atmospheric precipitation contribution to the elevated concentrations of dissolved metals during runoff events. Roof runoff samples had similar dissolved Cu and Fe concentration to those recorded in atmospheric rainfall water, but Zn was found to be higher in galvanised roof runoff. First flush samples from roof runoff had higher concentrations of all three metals than the delayed runoff samples, indicating the presence of accumulated particles containing metals. Paved surface runoff samples had concentrations of dissolved Cu and Zn higher than the chronic toxicity triggers, but the medians did not exceed the acute toxicity guidelines. The value of the median for the concentrations of dissolved Fe was below the CTV criteria. Similar results have been published for surface runoff in New Zealand and the international literature related to this field.</p>


2021 ◽  
Author(s):  
◽  
Omar Ahmed Alsager

<p>This work set out to determine the concentrations of dissolved copper (Cu), zinc (Zn) and iron (Fe) during base and wet weather flow at streams throughout the Wellington region. The secondary objective was to investigate possible sources of heavy metals during rainfall events. The concentrations of the three dissolved trace metals Cu, Zn and Fe were measured at 13 sites on five streams during base flow conditions and during runoff events (wet weather flow) in the Wellington region between January and July 2011. More than 240 base flow and 100 wet weather flow samples have been analysed for the three dissolved metals. Additionally, rainfall, roof runoff and paved surface runoff samples have been collected and analysed. The analysis was performed by Flame Atomic Absorption Spectroscopy (FAAS). A pre-concentration procedure using Chelex-100, a chelating polymeric resin bead, was developed and successfully used to enhance the concentrations of dissolved Cu and dissolved Zn. The recorded data were compared to the recommended long-term (chronic) toxicity triggers; the Australian and New Zealand Environment and Conservation Council freshwater toxicity trigger values (ANZECC (2000) TV) for dissolved Cu and Zn, and the Canadian trigger value (CTV) for dissolved Fe. Additionally, the concentrations of dissolved Cu and Zn in storm water samples were compared against the recommended short-term (acute) toxicity triggers, the United States Environmental Protection Agency (USEPA 2006) Criteria Maximum Concentrations (CMC). The medians of dissolved heavy metals concentrations; Cu, Zn, and Fe, all of which are potentially toxic to aquatic life, exceeded the long-term (chronic) toxicity guidelines at one of the studied sites for Fe, nine sites (69%) for Cu and 10 sites (77%) for Zn in base flow conditions. Comparison of base flow monitoring data to previous reports showed that the concentrations of the studied metals have increased over the last five years. Storm water (wet weather flow conditions) contained elevated levels of dissolved heavy metals in comparison to base flow concentrations which is consistent with what has been reported previously. Dissolved Cu and Zn exceeded the acute toxicity criteria at sites of suburban residential areas. The median of dissolved Fe concentration exceeded the sustained toxicity exposure trigger at eight of the studied sites (61%). Distinct catchment type contaminant concentrations (dissolved Cu and Zn) were observed during storm runoff events with a concentration pattern of suburban residential > commercial > light residential > rural catchment. Dissolved Fe exhibited a similar pattern but in this case the concentration in rural catchments was higher than in light residential catchments. These observations were attributed to the high traffic of vehicles passing nearby the area; accumulated particulate materials; and corrosion of materials containing heavy metals, such as galvanised and copper roofs, gutter systems and building construction materials. The strongest and most obvious first flush effect was observed with dissolved Cu followed by Zn where the phenomenon was observed in six storm runoff events for Cu and five events for Zn. The first flush effect of dissolved Fe was present in three out of eight storm runoff events. The concentrations of dissolved metals were of the same order of magnitude as those previously reported for the Wellington region, but this work recorded the highest expected concentrations, particularly, for dissolved Fe. The reported data are consistent with data sets from other New Zealand regions. The investigation of possible sources of dissolved heavy metals in storm runoff samples showed that rainfall water contained markedly elevated concentrations of dissolved Zn and smaller Cu concentrations, 0.04-0.075 and 0.0018-0.01 mg/L respectively, in comparison to the ANZECC (2000) TVs, 0.008 and 0.0014 mg/L respectively. The concentrations of dissolved Fe were below the CTV level of 0.3 mg/L. Most studies conducted in New Zealand did not take into account the atmospheric precipitation contribution to the elevated concentrations of dissolved metals during runoff events. Roof runoff samples had similar dissolved Cu and Fe concentration to those recorded in atmospheric rainfall water, but Zn was found to be higher in galvanised roof runoff. First flush samples from roof runoff had higher concentrations of all three metals than the delayed runoff samples, indicating the presence of accumulated particles containing metals. Paved surface runoff samples had concentrations of dissolved Cu and Zn higher than the chronic toxicity triggers, but the medians did not exceed the acute toxicity guidelines. The value of the median for the concentrations of dissolved Fe was below the CTV criteria. Similar results have been published for surface runoff in New Zealand and the international literature related to this field.</p>


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2250
Author(s):  
Núria Martínez-Carreras ◽  
Leslie Ogorzaly ◽  
Cécile Walczak ◽  
Christophe Merlin ◽  
Emmanuelle Montargès-Pelletier ◽  
...  

F-specific RNA bacteriophages (FRNAPHs) are commonly used as indicators of faecal and viral contamination in waters. Once they enter surface waters, the exact role of suspended solids, sediments and hydro-meteorological factors in their fluvial fate and transport is poorly understood, and long-term studies (e.g., over years) are lacking. In this study, FRNAPH concentrations and genogroup distribution were measured in the Orne River (France) during two years at weekly intervals, and during four storm runoff events. Hydro-meteorological driving factors were investigated at both time scales. FRNAPH concentrations and genogroups at different depths of a riverbank sediment core were also examined to better discriminate the origin of the faecal pollution. During low flows, the FRNAPH and the suspended solid transport were decoupled and the FRNAPH concentrations were mainly correlated with the air and water temperature. During storm runoff events, the FRNAPH concentrations only showed a significant correlation with conductivity, turbidity and water discharge. Despite the uncertainty of the predictions, multi parameter regression models using hydro-meteorological variables were suitable to predict log transformed FRNAPHs’ concentrations at low flows with a standard error of 0.46. Model performance using the storm runoff events dataset was low. This study highlights different driving factors at low flows and during storm runoff events, and the need to measure at both time scales to better understand phage transport dynamics in surface water.


Author(s):  
M.G. Mussakhanova ◽  
◽  
B.H. Tusupova ◽  
L.S. Kurbanova ◽  
◽  
...  

This article presents the results of a study of the effectiveness of reducing storm runoff of a permeable pavement system based on the experience of the United States (Minnesota) in stormwater management. The purpose of this article is to identify the most appropriate technology in the process of implementing stormwater management for the city of Almaty. This article uses the methods of reviewing the literature data and calculations on stormwater runoff using the BMP MIDS Calculator tool.


Author(s):  
Mike Kirkby ◽  
Artemi Cerda

Output from a runoff generation models is compared here with information from field measurements, making use of 11 years data from rainfall and runoff events at the Sierra de Enguera Soil Erosion Experimental Station in Eastern Spain.. The model presented simulates overland storm flow on a sloping rough and unvegetated surface, representing an area of 320x320 m. Green-Ampt infiltration constants are randomly assigned to each cell in a 128x128 grid, and rectangular storms applied at a range of total amounts and intensities to simulate runoff at each transect across the area. A simple algebraic expression is developed to estimate total runoff and storage in terms of storm size and duration, and plot length, with parameters that reflect infiltration behaviour, and this expression is compared with the SCS curve number approach. Output of these simulations is compared with measured storm runoff data on bare runoff plots at the Sierra de Enguera experimental Station in SE Spain and gives further support to the proposed expression for storm runoff.


2021 ◽  
Vol 769 (2) ◽  
pp. 022031
Author(s):  
Xiaomei Sun ◽  
Haiou Zhang ◽  
Dongwen Hua ◽  
Binmeng Wei
Keyword(s):  

Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 766
Author(s):  
Basil Gomez

The Mānā Plain is a land apart, buffered from oceanographic influences by ~3–35 m high backshore deposits, and drained by an intricate, >100-y-old ditch system and modern, large-capacity pumps. Quantifying present and prospective inputs and outputs for the hydrologic landscape suggests that, although sea-level rise (SLR) will begin to impact ditch system operations in 2040, transient, event-based flooding caused by rainfall, not SLR induced, multi-mechanism flooding, will continue to pose the most immediate threat. This is because as sea level rises the ability of gravity flows to discharge storm runoff directly into the ocean will diminish, causing floodwater to pond in low-lying depressions. Estimates of the volume of water involved suggests the risk of flooding from surface water is likely to extend to 5.45 km2 of land that is presently ≤ 1 m above sea level. This land will not be permanently inundated, but weeks of pumping may be required to remove the floodwater. Increasing pumping capacity and preserving some operational ability to discharge storm runoff under the influence of gravity will enhance the ditch system’s resilience to SLR and ensure it continues to fulfill its primary functions, of maintaining the water table below the root zone and diverting storm runoff away from farmland, at least until the end of this century.


Sign in / Sign up

Export Citation Format

Share Document