A novel hybrid genetic algorithm for the multidepot periodic vehicle routing problem

Author(s):  
Mohammad Mirabi

AbstractA genetic algorithm is a metaheuristic proposed to derive approximate solutions for computationally hard problems. In the literature, several successful applications have been reported for graph-based optimization problems, such as scheduling problems. This paper provides one definition of periodic vehicle routing problem for single and multidepots conforming to a wide range of real-world problems and also develops a novel hybrid genetic algorithm to solve it. The proposed hybrid genetic algorithm applies a modified approach to generate a population of initial chromosomes and also uses an improved heuristic called the iterated swap procedure to improve the initial solutions. Moreover, during the implementation a hybrid algorithm, cyclic transfers, an effective class of neighborhood search is applied. The author uses three genetic operators to produce good new offspring. The objective function consists of two terms: total traveled distance at each depot and total waiting time of all customers to take service. Distances are assumed Euclidean or straight line. These conditions are exactly consistent with the real-world situations and have received little attention in the literature. Finally, the experimental results have revealed that the proposed hybrid method can be competitive with the best existing methods as asynchronous parallel heuristic and variable neighborhood search in terms of solution quality to solve the vehicle routing problem.

2019 ◽  
Vol 259 ◽  
pp. 01003 ◽  
Author(s):  
Ekaterina Grakova ◽  
Martin Golasowski ◽  
Roberto Montemanni ◽  
Kateřina Slaninová ◽  
Jan Martinovič ◽  
...  

The large number of real-world applications have shown that the use of computational method for distribution process planning produces substantial savings. Many of these applications lead to problem generally known as Vehicle Routing Problem. The real-world applications are highly computationally demanding for larger instances. This article aims to show the possibilities and benefits of using hyperparameter search for solving the Periodic Vehicle Routing Problem for exhausted oil collection by execution on the supercomputing infrastructure using HyperLoom platform. HyperLoom is an open source platform for defining and executing scientific pipelines in a distributed environment. This experiment was run on the supercomputer Salomon operated by IT4Innovations.


2019 ◽  
Vol 20 (2) ◽  
pp. 68
Author(s):  
Annisa Kesy Garside ◽  
Nabila Rohmatul Laili

This paper discusses periodic vehicle routing problems that allow vehicles to travel on multiple trips in a single day. It is known as the Multi-Trip Periodic Vehicles (MTPVRP) Problem Route. Cluster-first route-second (CFRS) heuristics to solve MTPVRP was proposed in this study. In phase 1, customers were divided into clusters using the formulation of integer programming. Phase 2 determined the route of the cluster and verifies that the total journey time to visit the trips does not exceed the working hours of the vehicle. The implementation of the heuristic CFRS to solve the real problem faced by the LPG distributor shows that the procedure could provide a better routing solution.


Sign in / Sign up

Export Citation Format

Share Document