Representation of the temporal raphe within the optic tract of the cat

1989 ◽  
Vol 2 (3) ◽  
pp. 255-267 ◽  
Author(s):  
T. Fitzgibbon ◽  
W. Burke

AbstractThe retinal topography of the cat's optic tract was determined by means of injections of the enzyme horseradish peroxidase (HRP) into the tract. This analysis was accomplished by the subtraction of all HRP injection sites not labeling a defined retinal area from those injection sites which resulted in ganglion cell labeling (Venn diagram analysis). Using this method, the following correspondences were demonstrated for the ipsilateral and contralateral projections: superior retina represented in medial optic tract; inferior retina in lateral tract; and area centralis in a dorsocentral location (which was part of a larger area representing the visual streak). The temporal raphe was represented in the ipsilateral tract as a band curving from the area centralis region toward the dorsomedial border of the tract. Contralateral fibers from a region superior to the optic disc were found to be displaced with respect to the general retinal representation in the optic tract and this appeared to be related to retinal development. The ratio of contralateral to ipsilateral fibers was determined and found to be nonuniform within the tract.Injection of HRP into the optic tract of the cat also allowed the axons from labeled retinal ganglion cells to be traced within the retina and optic disc. Axons from ganglion cells lying temporal to the raphe curve around the area centralis enter the optic disc on the lateral and inferior aspects. Ganglion cells lying nasal to the raphe send their axons more directly to enter the optic disc on its superior aspect. A schema is proposed whereby the retina is mapped onto the optic tract.

1998 ◽  
Vol 15 (4) ◽  
pp. 677-684 ◽  
Author(s):  
J. RODGER ◽  
S.A. DUNLOP ◽  
L.D. BEAZLEY

The population of retinal ganglion cells which project ipsilaterally in the brain was examined in the fat-tailed dunnart, Sminthopsis crassicaudata, following injection of horseradish peroxidase into one optic tract. Retinae were examined as wholemounts and optic nerves as serial sections. In addition, visual fields were measured ophthalmoscopically. Ipsilaterally projecting ganglion cells were located temporal to a line which ran vertically through the middle of the area centralis and extended medially to define a ventrolateral crescent. Temporal to the naso-temporal division, a mean of 77% of ganglion cells projected ipsilaterally; these cells represented 20% of the total ganglion cell population. The magnitude and retinal location of the ipsilateral projection correlated with the extensive binocular field which measured 180 deg in the vertical (from 20 deg below the horizontal axis to 70 deg beyond the zenith) and 140 deg in horizontal meridian. Ipsilaterally projecting axons were restricted to the lateral third of the optic nerve along its length, sharing territory with contralaterally projecting axons.


Development ◽  
1986 ◽  
Vol 93 (1) ◽  
pp. 1-28
Author(s):  
Claudia A. O. Stuermer

This study investigates the order of regenerating retinal axons in the goldfish. The spatiotemporal pattern of axon regrowth was assessed by applying horseradish peroxidase (HRP) to regenerating axons in the optic tract at various times after optic nerve section and by analysing the distribution of retrogradely labelled ganglion cells in retina. At all regeneration stages labelled ganglion cells were widely distributed over the retina. There was no hint that axons from central (older) ganglion cells might regrow earlier, and peripheral (younger) ganglion cells later, as occurs in normal development. The absence of an age-related ordering in the regenerated optic nerve was demonstrated by labelling a few axon bundles intraorbitally with HRP (Easter, Rusoff & Kish, 1981) caudal to the previous cut. The retrogradely labelled cells in retina were randomly distributed in regenerates andnot clustered in annuli as in normals. Tracing regenerating axons which were stained anterogradelyfrom intraretinal HRP applications or retrogradely from single labelled tectal fascicles illustrated the fact that the regenerating axons coursed in abnormal routes in the optic nerve and tract. On the surface of the tectum regenerated fibres re-established a fascicle fan. The retinal origin of tectal fascicles was assessed by labelling individual peripheral, intermediate and rostral fascicles with HRP. The retrogradely labelled ganglion cells in the retina were often more widely distributed than in normals, but were mostly found in peripheral, intermediate and central retina, respectively. The order of fibre departure from each tectal fascicle was revealed by placing HRP either on the fascicle's proximal or on its distal half. With proximal labelling sites labelled ganglion cells were found in the temporal and nasal retina, and with distal labelling sites labelled ganglion cells were confined to nasal retina only. Further, the axonal trajectories of anterogradely labelled dorsotemporal retinal ganglion cells were compared to those of dorsonasal retinal ganglion cells in tectal whole mounts. Dorsotemporal axons were confined to the rostral tectal half, whereas dorsonasal axons followed fascicular routes into the fascicles' distal end and reached into caudal tectum. This suggests that the fibres exited along their fascicle's course in a temporonasal sequence. Thus in the tectum, fibres in fascicles restore a gross spatial and age-related order and tend to follow their normal temporonasal sequence of exit.


Development ◽  
1987 ◽  
Vol 101 (4) ◽  
pp. 857-867 ◽  
Author(s):  
R.W. Guillery ◽  
G. Jeffery ◽  
B.M. Cattanach

Female mice showing albino mosaicism due to an X-autosome translocation [Is(In7;X)Ct] have been studied in order to investigate the relationship between the distribution of melanin and the formation, early in development, of the abnormally small uncrossed retinofugal pathway characteristically found in all albino mammals. Earlier evidence indicates that cells normally bearing melanin play a role in producing the abnormality. In the mosaic mice, the albino gene is expressed in only about half of the cells due to random X-inactivation and the patches of normal and albino cells are extremely small relative to total retinal size (less than 1/50). We argued that if all the cells that would normally bear melanin play a role in producing the albino abnormality then the mosaic mice would have a pathway abnormality, about half the size of that in the albino mice. If, however, only a small patch of these cells plays a role, as has been proposed in earlier studies, then one would expect the size of the uncrossed pathway to be highly variable in the mosaic mice. The size of the uncrossed pathway was assessed by placing horseradish peroxidase in the region of the optic tract and lateral geniculate nucleus unilaterally and then counting the number of retrogradely labelled retinal ganglion cells on the same side. The mosaic mice showed a highly variable uncrossed pathway. In some of the mosaic mice, it was the same size as in the albinos and, in others, it was the same size as in normally pigmented mice. Surprisingly, in a small number of mosaic mice, the uncrossed pathway was larger than normal. Whether this relatively rare occurrence of a supernormal uncrossed pathway is due to the higher gene dosage or to the translocation itself remains an open question.


1991 ◽  
Vol 6 (2) ◽  
pp. 159-174 ◽  
Author(s):  
T. Fitzgibbon ◽  
K. Funke ◽  
U. Th. Eysel

AbstractRetinal ganglion cells within the same region of the retina may have different lengths of axon before reaching the optic disc depending on the route they take with respect to the temporal raphe. We have investigated whether there is a correlation between soma and intraretinal axon diameter and how these parameters relate to intraretinal axon length on both sides of the cat temporal raphe. Retinas were wholemounted and alpha-cell somata and fibers stained with a modified neurofibrillar method. Moving peripherally from the area centralis along the raphe there was a progressively increasing difference between the intraretinal axon lengths for nearly adjacent cells across the raphe, which reached a maximum of 4–5 mm at the retinal periphery. Cells on the nasal aspect of the raphe had shorter axons than did adjacent cells on the temporal aspect of the raphe. Comparison of soma diameter s&les across the raphe showed there was no clear trend between soma diameter and intraretinal length. Replotting the raphe and s&le areas on a cell density map indicated that différences in soma diameter could be attributed to ganglion-cell density differences between the s&led areas.Examination of the stained cells revealed that within the initial length of the axon there was a region showing a reduction of axon diameter (diameter <1 μm), which varied in length from cell to cell. The axon was, therefore, divided into three segments: the portion of axon prior to thinning (A), the thin segment itself (B), and the part of the axon after the thin segment (C). The diameter of each segment (A, B, C) and the lengths of the first and second segments (A, B) were significantly correlated with soma diameter (P < 0.001). From measurements of the axon diameter of segment C, it was concluded that alpha-cell axons continue to increase in diameter along their path towards the optic disc.The present report indicates that alpha-cell soma size, when going from the area centralis to the periphery along the raphe, reaches a plateau and then declines within more peripheral retinal locations in spite of increasing intraretinal axon length. Thus, there is no positive correlation between soma or axon diameter and intraretinal axon length. The anatomical findings are discussed in relation to previous reports of retinal development and complementary conduction times within intraretinal and extraretinal visual pathways.


2000 ◽  
Vol 355 (1401) ◽  
pp. 1161-1166 ◽  
Author(s):  
M. Uemura ◽  
H. Somiya ◽  
M. Moku ◽  
K. Kawaguchi

The daggertooth Anotopteruspharao (Aulopiformes: Anotopteridae) is a large, piscivorous predator that lives within the epipelagic zone at night. In this species, the distribution of retinal ganglion cells has been examined. An isodensity contour map of ganglion cells shows that the cells concentrate in a slightly ventral region of the temporal retina. The region of high ganglion cell density contains 4.07 × 10 3 cells mm −2 , and the resulting visual acuity is 3.5 cycles deg −1 . Outside the area centralis, conspicuously large ganglion cells (LGCs) are observed in the temporal margin of the retina. The LGCs are regularly arrayed, and displaced into the inner plexiform layer. Thick dendrites extend into the outer part (sublamina a) of the inner plexiform layer. In the retinal whole mount, the total number of LGCs is 1590 (90.7cm specimen), and the mean size of the LGCs is about four times larger than that of the ordinary ganglion cells. The morphological appearance of the LGCs was similar to the off–type alpha cells of the cat retina. The function of these distinctive LGCs is discussed in relation to specific head–up feeding behaviour.


1991 ◽  
Vol 1991 (Supplement51) ◽  
pp. 10-17
Author(s):  
Isao Kato ◽  
Tomoyuki Okada ◽  
Shoji Watanabe ◽  
Shigeki Sato ◽  
Isamu Takeyama

Sign in / Sign up

Export Citation Format

Share Document