Calretinin in the cat retina: Colocalizations with other calcium-binding proteins, GABA and glycine

1997 ◽  
Vol 14 (2) ◽  
pp. 311-322 ◽  
Author(s):  
Dennis J. Goebel ◽  
Roberta G. Pourcho

AbstractImmunocytochemical techniques were used to determine the distribution of the calcium-binding protein calretinin in the cat retina. Comparisons were made with parvalbumin and calbindin as well as with the inhibitory neurotransmitters GABA and glycine. Calretinin immunoreactivity was seen in horizontal cells and multiple subpopulations of amacrine and ganglion cells. Cone outer segments were also stained. Calbindin immunoreactivity was present in cone photoreceptors, horizontal cells, at least two subtypes of cone bipolar cell, numerous amacrine cells, and cells residing in the ganglion cell layer. Heavy staining for parvalbumin was found in both A- and B-type horizontal cells, distinct subpopulations of amacrine and ganglion cells, and a small population of cone photoreceptor cells. To confirm the identity of cone photoreceptors, comparisons were made with retinas stained for opsins specific for red/green or blue cones (Szé1 et al., 1986). The localization of parvalbumin corresponded with that of blue-type cones only whereas calretinin and calbindin staining showed the same distribution as both red/green and blue cones. Double-label immunofluorescence studies revealed colocalization of all three of the calcium-binding proteins in a number of neurons including horizontal cells and AII amacrine cells. To assess a possible transmitter-specific relationship for calretinin, double-label studies were carried out with GABA and glycine. However, the staining patterns for each of these inhibitory amino acids differed substantially from that of calretinin. The possibility remains that calretinin and other calcium-binding proteins may play a role in neurotransmission through interactions with receptors or second-messenger agents.

1990 ◽  
Vol 5 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Brigitte Pasteels ◽  
John Rogers ◽  
François Blachier ◽  
Roland Pochet

AbstractCalbindin-D28K and calretinin are homologous calcium-binding proteins localized in many neurons of the central nervous system. We have compared polyclonal antibodies against calbindin and calretinin and have shown by western blots using purified calbindin and calretinin from rat that (1) anti-calretinin does not recognize calbindin and (2) anti-calbindin presents some cross-reactivity with calretinin.In this report, we have compared by immunohistochemistry the localization of both calcium-binding proteins in the retina of monkey, pig, sheep, rat, cat, pigeon, and salamander. These results are compared with previous data for chick. There are many differences between species and not within species, but some aspects of the distribution are conserved. All species, except rat and monkey, have some cones which contain calbindin only. Most species also have some bipolar cells containing calbindin only. Calretinin is rarely seen in photoreċeptors or bipolar cells. All species have horizontal cells which contain calretinin or calbindin or both. All species have amacrine cells and ganglion cells containing one or other protein.In the cat ganglion cell layer, the calretinin antisera define a new, asymmetric, type of cell.


2019 ◽  
Author(s):  
Tetsuya Hasegawa ◽  
Soichi Tetsuka ◽  
Aya Yamaguchi ◽  
Chieko Kobashi ◽  
Tomomi Sato ◽  
...  

Abstract Introduction: To report a case of unilateral peripheral cone dysfunction syndrome and evaluate the associated clinicopathological changes using swept-source optical coherence tomography (SS-OCT). Case Presentation: A 39-year-old Japanese woman reported a visual field defect of 2-years duration in the right eye. The patient underwent visual field testing, full-field electroretinography (ff-ERG), SS-OCT, and a routine ophthalmologic examination. The best-corrected visual acuity was 20/20 bilaterally. The funduscopy examination was normal bilaterally. Visual field testing showed a relative paracentral scotoma in the right eye. SS-OCT scans showed an unclear interdigitation zone (IZ) throughout the posterior pole except for the foveal zone in the right eye. SS-OCT macular analysis showed thinning of the ganglion cell layer (GCL) and inner plexiform layer (IPL) corresponding to the region of the IZ defect. ff-ERG showed almost normal flash ERGs and normal rod responses bilaterally. The cone response and flicker ERG response were decreased markedly only in the right eye. Conclusion: To the best of our knowledge, this is the first case report of unilateral peripheral cone dysfunction syndrome in which SS-OCT showed pathological changes in the GCL and IPL. The OCT findings corresponded well to the ERG changes and visual field abnormality. Because foveolar cone photoreceptor cells are connected in a one-to-one correspondence to retinal ganglion cells without connection to the horizontal cells or amacrine cells, the GCL and IPL were not present in the fovea. Based on this analysis, we speculated that the primary lesion of peripheral cone dysfunction syndrome is not in the cone photoreceptor cells but in the horizontal cells and/or amacrine cells. The clinicopathological changes in the ganglion cells and cone photoreceptor cells might be the subsequent pathologies in the horizontal cells in peripheral cone dysfunction syndrome.


1999 ◽  
Vol 16 (6) ◽  
pp. 983-990 ◽  
Author(s):  
ROBERT GÁBRIEL ◽  
BÉLA VÖLGYI ◽  
EDIT POLLÁK

Calretinin-containing retinal amacrine cells are heterogeneous with regard to their neurochemical properties. In the rabbit retina, about 90% of them contain glycine, as evidenced in the present study by double-label immunocytochemistry. In a previous report, we showed that a small population of amacrine cells contains both γ-aminobutyric acid and calretinin. In this study, we further identified this cell population by means of known secondary markers. However, none of the markers we tested (choline acetyltransferase, serotonin accumulation, NADPH-diaphorase, vasoactive intestinal polypeptide) co-localized with calretinin. A small population (1%) of the cells in the ganglion cell layer contains both calretinin and glycine. Since calretinin-positive cells in the ganglion cell layer have been identified as ganglion cells based on soma size and presence of calretinin-positive axons in the optic nerve fiber layer, this population may represent a class of ganglion cell which contains glycine. Our results, together with those of other studies, suggest that calretinin is not a general marker of any of the well-known amacrine cell types in the mammalian retina. Rather, calretinin, just as other calcium-binding proteins, is distributed in a species-specific manner. At the same time it appears that, as shown for horizontal cells, one or more of the major buffer-type calcium-binding proteins of the EF-hand family is present in most of the retinal amacrine cells.


2018 ◽  
Vol 90 ◽  
pp. 57-69 ◽  
Author(s):  
Francisco Gilberto Oliveira ◽  
Expedito Silva do Nascimento-Júnior ◽  
Judney Cley Cavalcante ◽  
Fausto Pierdoná Guzen ◽  
Jeferson de Souza Cavalcante ◽  
...  

1999 ◽  
Vol 16 (6) ◽  
pp. 1105-1114 ◽  
Author(s):  
PU QIN ◽  
ROBERTA G. POURCHO

AMPA-selective glutamate receptors play a major role in glutamatergic neurotransmission in the retina and are expressed in a variety of neuronal subpopulations. In the present study, immunocytochemical techniques were used to visualize the distribution of GluR2 and GluR4 subunits in the cat retina. Results were compared with previous localizations of GluR1 and GluR2/3. Staining for GluR2 was limited to a small number of amacrine and ganglion cells whereas GluR4 staining was present in A-type horizontal cells, many amacrine cells including type AII amacrine cells, and the majority of the cells in the ganglion cell layer. Analysis of synaptic relationships in the outer plexiform layer showed the GluR4 subunit to be concentrated at the contacts of cone photoreceptors with A-horizontal cells. In the inner plexiform layer, both GluR2 and GluR4 were postsynaptic to cone bipolar cells at dyad contacts although GluR2 staining was limited to one of the postsynaptic elements whereas GluR4 immunoreactivity was often seen in both postsynaptic elements. Unlike GluR2, GluR4 was also postsynaptic to rod bipolar cells where it could be visualized in processes of AII amacrine cells. The data indicate that GluR3 and GluR4 subunits are colocalized in a number of cell types including A-type horizontal cells, AII amacrine cells, and alpha ganglion cells, but whether they are combined in the same multimeric receptors remains to be determined.


2019 ◽  
Author(s):  
Tetsuya Hasegawa ◽  
Soichi Tetsuka ◽  
Aya Yamaguchi ◽  
Chieko Kobashi ◽  
Tomomi Sato ◽  
...  

Abstract Introduction: To report a case of unilateral peripheral cone dysfunction syndrome and evaluate the associated clinicopathological changes using swept-source optical coherence tomography (SS-OCT). Case Presentation: A 39-year-old Japanese woman reported a visual field defect of 2-years duration in the right eye. The patient underwent visual field testing, full-field electroretinography (ff-ERG), SS-OCT, and a routine ophthalmologic examination. The best-corrected visual acuity was 20/20 bilaterally. The funduscopy examination was normal bilaterally. Visual field testing showed a relative paracentral scotoma in the right eye. SS-OCT scans showed an unclear interdigitation zone (IZ) throughout the posterior pole except for the foveal zone in the right eye. SS-OCT macular analysis showed thinning of the ganglion cell layer (GCL) and inner plexiform layer (IPL) corresponding to the region of the IZ defect. ff-ERG showed almost normal flash ERGs and normal rod responses bilaterally. The cone response and flicker ERG response were decreased markedly only in the right eye. Conclusion: To the best of our knowledge, this is the first case report of unilateral peripheral cone dysfunction syndrome in which SS-OCT showed pathological changes in the GCL and IPL. The OCT findings corresponded well to the ERG changes and visual field abnormality. Because foveolar cone photoreceptor cells are connected in a one-to-one correspondence to retinal ganglion cells without connection to the horizontal cells or amacrine cells, the GCL and IPL were not present in the fovea. Based on this analysis, we speculated that the primary lesion of peripheral cone dysfunction syndrome is not in the cone photoreceptor cells but in the horizontal cells and/or amacrine cells. The clinicopathological changes in the ganglion cells and cone photoreceptor cells might be the subsequent pathologies in the horizontal cells in peripheral cone dysfunction syndrome.


Sign in / Sign up

Export Citation Format

Share Document