cone photoreceptor
Recently Published Documents


TOTAL DOCUMENTS

428
(FIVE YEARS 118)

H-INDEX

52
(FIVE YEARS 8)

2021 ◽  
Author(s):  
Ryoji Amamoto ◽  
Grace K Wallick ◽  
Constance Cepko

Retinitis Pigmentosa (RP) is a wide array of progressive, debilitating visual disorders caused by mutations in a diverse set of genes. In both human patients and mouse models of RP, rod photoreceptor dysfunction leads to loss of night vision, and is followed by secondary cone photoreceptor dysfunction and degeneration, leading to loss of daylight color vision. A strategy to prevent secondary cone death could provide a generalized RP therapy to preserve daylight color vision regardless of the underlying mutation. In mouse models of RP, cones in the far peripheral retina survive long-term, despite complete rod loss. The mechanism for such peripheral cone survival had not been explored. Here, we found that active retinoic acid (RA) signaling in peripheral Muller glia is both sufficient and necessary for the extended cone survival. RA depletion by conditional knockout of RA synthesis enzymes, or overexpression of an RA degradation enzyme, abrogated peripheral cone survival. Conversely, constitutive activation of RA signaling in the central retina promoted long-term cone survival. These results indicate that RA signaling mediates the prolonged peripheral cone survival in the rd1 mouse model of retinal degeneration, and provide a basis for a generic strategy for cone survival in the many diseases that lead to loss of cone-mediated vision.


2021 ◽  
Vol 118 (47) ◽  
pp. e2107444118
Author(s):  
Ayoub Lassoued ◽  
Furu Zhang ◽  
Kazuhiro Kurokawa ◽  
Yan Liu ◽  
Marcel T. Bernucci ◽  
...  

Retinitis pigmentosa (RP) is the most common group of inherited retinal degenerative diseases, whose most debilitating phase is cone photoreceptor death. Perimetric and electroretinographic methods are the gold standards for diagnosing and monitoring RP and assessing cone function. However, these methods lack the spatial resolution and sensitivity to assess disease progression at the level of individual photoreceptor cells, where the disease originates and whose degradation causes vision loss. High-resolution retinal imaging methods permit visualization of human cone cells in vivo but have only recently achieved sufficient sensitivity to observe their function as manifested in the cone optoretinogram. By imaging with phase-sensitive adaptive optics optical coherence tomography, we identify a biomarker in the cone optoretinogram that characterizes individual cone dysfunction by stimulating cone cells with flashes of light and measuring nanometer-scale changes in their outer segments. We find that cone optoretinographic responses decrease with increasing RP severity and that even in areas where cone density appears normal, cones can respond differently than those in controls. Unexpectedly, in the most severely diseased patches examined, we find isolated cones that respond normally. Short-wavelength–sensitive cones are found to be more vulnerable to RP than medium- and long-wavelength–sensitive cones. We find that decreases in cone response and cone outer-segment length arise earlier in RP than changes in cone density but that decreases in response and length are not necessarily correlated within single cones.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Domino K Schlegel ◽  
Srinivasagan Ramkumar ◽  
Johannes von Lintig ◽  
Stephan CF Neuhauss

The RLBP1 gene encodes the 36 kDa cellular retinaldehyde binding protein, CRALBP, a soluble retinoid carrier, in the visual cycle of the eyes. Mutations in RLBP1 are associated with recessively inherited clinical phenotypes, including Bothnia dystrophy, retinitis pigmentosa, retinitis punctata albescens, fundus albipunctatus, and Newfoundland rod-cone dystrophy. However, the etiology of these retinal disorders is not well understood. Here, we generated homologous zebrafish models to bridge this knowledge gap. Duplication of the rlbp1 gene in zebrafish and cell-specific expression of the paralogs rlbp1a in the retinal pigment epithelium and rlbp1b in Müller glial cells allowed us to create intrinsically cell type-specific knockout fish lines. Using rlbp1a and rlbp1b single and double mutants, we investigated the pathological effects on visual function. Our analyses revealed that rlbp1a was essential for cone photoreceptor function and chromophore metabolism in the fish eyes. rlbp1a mutant fish displayed reduced chromophore levels and attenuated cone photoreceptor responses to light stimuli. They accumulated 11-cis and all-trans-retinyl esters which displayed as enlarged lipid droplets in the RPE reminiscent of the subretinal yellow-white lesions in patients with RLBP1 mutations. During aging, these fish developed retinal thinning and cone and rod photoreceptor dystrophy. In contrast, rlbp1b mutants did not display impaired vision. The double mutant essentially replicated the phenotype of the rlbp1a single mutant. Together, our study showed that the rlbp1a zebrafish mutant recapitulated many features of human blinding diseases caused by RLBP1 mutations and provided novel insights into the pathways for chromophore regeneration of cone photoreceptors.


Author(s):  
Yiwei Chen ◽  
Yi He ◽  
Jing Wang ◽  
Wanyue Li ◽  
Lina Xing ◽  
...  

Cone photoreceptor cell identification is important for the early diagnosis of retinopathy. In this study, an object detection algorithm is used for cone cell identification in confocal adaptive optics scanning laser ophthalmoscope (AOSLO) images. An effectiveness evaluation of identification using the proposed method reveals precision, recall, and [Formula: see text]-score of 95.8%, 96.5%, and 96.1%, respectively, considering manual identification as the ground truth. Various object detection and identification results from images with different cone photoreceptor cell distributions further demonstrate the performance of the proposed method. Overall, the proposed method can accurately identify cone photoreceptor cells on confocal adaptive optics scanning laser ophthalmoscope images, being comparable to manual identification.


Author(s):  
Christina Eckmann‐Hansen ◽  
Mathias Hvidtfelt Hansen ◽  
Poul Pedersen Laigaard ◽  
Birgit Agnes Sander ◽  
Inger Christine Munch ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 ◽  
Author(s):  
Rigmor C. Baraas ◽  
Åshild Horjen ◽  
Stuart J. Gilson ◽  
Hilde R. Pedersen

Background: Age-related macular degeneration (AMD) is a multifactorial degenerative disorder that can lead to irreversible loss of visual function, with aging being the prime risk factor. However, knowledge about the transition between healthy aging and early AMD is limited. We aimed to examine the relationship between psychophysical measures of perifoveal L-cone acuity and cone photoreceptor structure in healthy aging and early AMD.Methods and Results: Thirty-nine healthy participants, 10 with early AMD and 29 healthy controls were included in the study. Multimodal high-resolution retinal images were obtained with adaptive-optics scanning-light ophthalmoscopy (AOSLO), optical-coherence tomography (OCT), and color fundus photographs. At 5 degrees retinal eccentricity, perifoveal L-cone isolating letter acuity was measured with psychophysics, cone inner segment and outer segment lengths were measured using OCT, while cone density, spacing, and mosaic regularity were measured using AOSLO. The Nyquist sampling limit of cone mosaic (Nc) was calculated for each participant. Both L-cone acuity and photoreceptor inner segment length declined with age, but there was no association between cone density nor outer segment length and age. A multiple regression showed that 56% of the variation in log L-cone acuity was accounted for by Nc when age was taken into account. Six AMD participants with low risk of progression were well within confidence limits, while two with medium-to-severe risk of progression were outliers. The observable difference in cone structure between healthy aging and early AMD was a significant shortening of cone outer segments.Conclusion: The results underscore the resilience of cone structure with age, with perifoveal functional changes preceding detectable changes in the cone photoreceptor mosaic. L-cone acuity is a sensitive measure for assessing age-related decline in this region. The transition between healthy aging of cone structures and changes in cone structures secondary to early AMD relates to outer segment shortening.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1177
Author(s):  
Rosario Amato ◽  
Alessio Canovai ◽  
Alberto Melecchi ◽  
Salvatore Pezzino ◽  
Roberta Corsaro ◽  
...  

Light-induced retinal damage (LD) is characterized by the accumulation of reactive oxygen species leading to oxidative stress and photoreceptor cell death. The use of natural antioxidants has emerged as promising approach for the prevention of LD. Among them, lutein and cyanidin-3-glucoside (C3G) have been shown to be particularly effective due to their antioxidant and anti-inflammatory activity. However, less is known about the possible efficacy of combining them in a multicomponent mixture. In a rat model of LD, Western blot analysis, immunohistochemistry and electroretinography were used to demonstrate that lutein and C3G in combination or in a multicomponent mixture can prevent oxidative stress, inflammation, gliotic and apoptotic responses thus protecting photoreceptor cells from death with higher efficacy than each component alone. Combined efficacy on dysfunctional electroretinogram was also demonstrated by ameliorated rod and cone photoreceptor responses. These findings suggest the rationale to formulate multicomponent blends which may optimize the partnering compounds bioactivity and bioavailability.


Author(s):  
Timo W. F. Mulders ◽  
B. Jeroen Klevering ◽  
Carel B. Hoyng ◽  
Thomas Theelen

Abstract Purpose To evaluate reliability and repeatability of computer-assisted measurements of cone photoreceptor metrics on Heidelberg Engineering Spectralis™ High Magnification Module (HMM™) Automatic Real-time Tracking (ART™) images. Methods We analyzed HMM™ images in three separate study arms. Computer-assisted cone identification software was validated using an open-access adaptive optics (AO) dataset. We compared results of the first arm to data from AO and histology. We evaluated intersession repeatability of our computer-assisted cone analysis in the second arm. We assessed the capability of HMM™ to visualize cones in the presence of pathology in the third arm. Results We included 10 healthy subjects in the first arm of our study, 5 additional healthy participants in the second arm and 5 patients in the third arm. In total, we analyzed 225 regions of interest on HMM™ images. We were able to automatically identify cone photoreceptors and assess corresponding metrics at all eccentricities between 2 and 9° from the fovea. Cone density significantly declined with increasing eccentricity (p = 4.890E-26, Friedman test). With increasing eccentricity, we found a significant increase in intercell distance (p = 2.196E-25, Friedman test) and nearest neighbor distance (p = 1.997E-25, Friedman test). Cone hexagonality ranged between 71 and 85%. We found excellent automated intersession repeatability of cone density counts and spacing measurements. In pathology, we were also able to repeatedly visualize photoreceptors. Conclusion Computer-assisted cone photoreceptor analysis on Spectralis™ HMM™ images is feasible, and most cone metrics show excellent repeatability. HMM™ imaging may be useful for photoreceptor analysis as progression marker in outer retinal disease.


Sign in / Sign up

Export Citation Format

Share Document