Evidence for only depolarizing rod bipolar cells in the primate retina

1989 ◽  
Vol 2 (5) ◽  
pp. 421-424 ◽  
Author(s):  
Robert P. Dolan ◽  
Peter H. Schiller

AbstractThe mammalian rod bipolar, for which only one class has been identified, has been described as being hyperpolarizing by some investigators and depolarizing by others. We now report the effects of 2-amino-4-phosphonobutyrate (APB), a potent blocker of depolarizing bipolar cells, on visual behavior in the dark-adapted monkey. While in mesopic and photopic conditions only the monkeys' ability to detect incremental stimuli is impaired, under scotopic conditions all light mediated response in the monkey is eliminated. Assuming APB is acting on rod bipolars in the same fashion as it does on cone bipolars, we conclude that the primate rod bipolars all depolarize to light and that the ON and OFF channels are formed by the amacrine cell network.

2018 ◽  
Vol 120 (2) ◽  
pp. 867-879 ◽  
Author(s):  
Michael D. Flood ◽  
Johnnie M. Moore-Dotson ◽  
Erika D. Eggers

Dopamine modulation of retinal signaling has been shown to be an important part of retinal adaptation to increased background light levels, but the role of dopamine modulation of retinal inhibition is not clear. We previously showed that light adaptation causes a large reduction in inhibition to rod bipolar cells, potentially to match the decrease in excitation after rod saturation. In this study, we determined how dopamine D1 receptors in the inner retina contribute to this modulation. We found that D1 receptor activation significantly decreased the magnitude of inhibitory light responses from rod bipolar cells, whereas D1 receptor blockade during light adaptation partially prevented this decline. To determine what mechanisms were involved in the modulation of inhibitory light responses, we measured the effect of D1 receptor activation on spontaneous currents and currents evoked from electrically stimulating amacrine cell inputs to rod bipolar cells. D1 receptor activation decreased the frequency of spontaneous inhibition with no change in event amplitudes, suggesting a presynaptic change in amacrine cell activity in agreement with previous reports that rod bipolar cells lack D1 receptors. Additionally, we found that D1 receptor activation reduced the amplitude of electrically evoked responses, showing that D1 receptors can modulate amacrine cells directly. Our results suggest that D1 receptor activation can replicate a large portion but not all of the effects of light adaptation, likely by modulating release from amacrine cells onto rod bipolar cells. NEW & NOTEWORTHY We demonstrated a new aspect of dopaminergic signaling that is involved in mediating light adaptation of retinal inhibition. This D1 receptor-dependent mechanism likely acts through receptors located directly on amacrine cells, in addition to its potential role in modulating the strength of serial inhibition between amacrine cells. Our results also suggest that another D2/D4 receptor-dependent or dopamine-independent mechanism must also be involved in light adaptation of inhibition to rod bipolar cells.


1996 ◽  
Vol 13 (5) ◽  
pp. 817-831 ◽  
Author(s):  
Giovanni Casini ◽  
Achille Grassi ◽  
Luigi Trasarti ◽  
Paola Bagnoli

AbstractRod bipolar cells constitute the second-order neuron in the rod pathway. Previous investigations of the rabbit retina have evaluated the development of other components of the rod pathway, namely the dopaminergic and All amacrine cell populations. To gain further insights into the maturation of this retinal circuitry, we studied the development of rod bipolar cells, identified with antibodies directed to the α isoform of protein kinase C (PKC), in the rabbit retina. Lightly immunostained PKC-immunoreactive (IR) somata are first observed at postnatal day (PND) 6 in the distal inner nuclear layer (INL). Immunostaining is also observed in the outer plexiform layer (OPL), indicating the presence of PKC-IR dendrites. PKC-IR axons are present in the INL oriented toward the inner plexiform layer (IPL). Several of them terminate with enlarged structures resembling growth cones. At PND 8, some immunostained terminal bulbs, characteristic of rod bipolar cells, are detected in the proximal IPL. PKC-IR cells at PND 11 (eye opening) display stronger immunostaining and more mature characteristics than at earlier ages. The dendritic arborizations of these cells in the OPL and their axon terminals in the IPL attain mature morphology at later ages (PND 30 or older). The density of PKC-IR cells shows a peak at PND 11 followed by a drastic decrease up to adulthood. The total number of PKC-IR cells increases from PND 6 to PND 11 and then it remains almost unchanged until adulthood. The mosaic of PKC-IR cells is nonrandom in some retinal locations at PND 6, but the overall regularity index at PND 6 is lower than at older ages. The present data provide a comprehensive evaluation of the development of rod bipolar cells in the postnatal rabbit retina and are consistent with those previously reported for dopaminergic and All amacrine cell populations, indicating that different components of the rod pathway follow a similar pattern of maturation, presumably allowing the rod pathway to be functional at eye opening.


2015 ◽  
Vol 113 (7) ◽  
pp. 2078-2090 ◽  
Author(s):  
Johnnie M. Moore-Dotson ◽  
Justin S. Klein ◽  
Reece E. Mazade ◽  
Erika D. Eggers

Neurotransmitter release varies between neurons due to differences in presynaptic mechanisms such as Ca2+ sensitivity and timing. Retinal rod bipolar cells respond to brief dim illumination with prolonged glutamate release that is tuned by the differential release of GABA and glycine from amacrine cells in the inner retina. To test if differences among types of GABA and glycine release are due to inherent amacrine cell release properties, we directly activated amacrine cell neurotransmitter release by electrical stimulation. We found that the timing of electrically evoked inhibitory currents was inherently slow and that the timecourse of inhibition from slowest to fastest was GABAC receptors > glycine receptors > GABAA receptors. Deconvolution analysis showed that the distinct timing was due to differences in prolonged GABA and glycine release from amacrine cells. The timecourses of slow glycine release and GABA release onto GABAC receptors were reduced by Ca2+ buffering with EGTA-AM and BAPTA-AM, but faster GABA release on GABAA receptors was not, suggesting that release onto GABAA receptors is tightly coupled to Ca2+. The differential timing of GABA release was detected from spiking amacrine cells and not nonspiking A17 amacrine cells that form a reciprocal synapse with rod bipolar cells. Our results indicate that release from amacrine cells is inherently asynchronous and that the source of nonreciprocal rod bipolar cell inhibition differs between GABA receptors. The slow, differential timecourse of inhibition may be a mechanism to match the prolonged rod bipolar cell glutamate release and provide a way to temporally tune information across retinal pathways.


2010 ◽  
Vol 30 (6) ◽  
pp. 2330-2339 ◽  
Author(s):  
A. E. Chavez ◽  
W. N. Grimes ◽  
J. S. Diamond

1991 ◽  
Vol 7 (1-2) ◽  
pp. 99-112 ◽  
Author(s):  
Heinz Wässle ◽  
Masayuki Yamashita ◽  
Ursula Greferath ◽  
Ulrike Grünert ◽  
Frank Müller

AbstractThree approaches to study the function of mammalian rod bipolar cells are described. Extracellular recordings from the intact cat eye under light- and dark-adapted conditions showed that in dark-adapted retina all light responses can be blocked by 2-amino-4-phosphonobutyrate (APB). Immunocytochemical staining with an antibody against protein kinase C (PKC) labeled rod bipolar cells in all mammalian retinae tested. When rat retinae were dissociated, PKC immunoreactivity was also found in isolated bipolar cells and could be used for their identification as rod bipolars. Patch-clamp recordings were performed from such dissociated rod bipolar cells and their responses to APB were measured. APB closed a nonselective cation channel in the cell membrane. The actions of GABA and glycine were also tested and both opened chloride channels in dissociated rod bipolar cells. These results suggest that rod bipolar cells are depolarized by a light stimulus and that GABA as well as glycine modulate their light responses.


2015 ◽  
Vol 56 (8) ◽  
pp. 4961 ◽  
Author(s):  
Wei-Hong Xiong ◽  
Ji-Jie Pang ◽  
Mark E. Pennesi ◽  
Robert M. Duvoisin ◽  
Samuel M. Wu ◽  
...  

1996 ◽  
Vol 76 (1) ◽  
pp. 401-422 ◽  
Author(s):  
E. Hartveit

1. With the use of the whole cell voltage-clamp technique, I have recorded the current responses to ionotropic glutamate receptor agonists of rod bipolar cells in vertical slices of rat retina. Rod bipolar cells constitute a single population of cells and were visualized by infrared differential interference contrast video microscopy. They were targeted by the position of their cell bodies in the inner nuclear layer and, after recording, were visualized in their entirety by labeling with the fluorescent dye Lucifer yellow, which was included in the recording pipette. To study current-voltage relationships of evoked currents, voltage-gated potassium currents were blocked by including Cs+ and tetraethylammonium+ in the recording pipette. 2. Pressure application of the non-N-methyl-D-aspartate (non-NMDA) receptor agonists kainate and (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) from puffer pipettes evoked a long-latency conductance increase selective for chloride ions. When the intracellular chloride concentration was increased, the reversal potential changed, corresponding to the change in equilibrium potential for chloride. The response was evoked in the presence of 5 mM Co2+ and nominally O mM Ca2+ in the extracellular solution, presumably blocking all external Ca2(+)-dependent release of neurotransmitter. 3. The long latency of kainate-evoked currents in bipolar cells contrasted with the short-latency currents evoked by gamma-aminobutyric acid (GABA) and glycine in rod bipolar cells and by kainate in amacrine cells. 4. Application of NMDA evoked no response in rod bipolar cells. 5. Coapplication of AMPA with cyclothiazide, a blocker of agonist-evoked desensitization of AMPA receptors, enhanced the conductance increase compared with application of AMPA alone. Coapplication of the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione blocked the response to kainate and AMPA, indicating that the response was mediated by conventional ionotropic glutamate receptors. 6. The conductance increase evoked by non-NMDA receptor agonists could not be blocked by a combination of 100 microM picrotoxin and 10 microM strychnine. Application of the GABAC receptor antagonist 3-aminopropyl (methyl)phosphinic acid (3-APMPA) strongly reduced the response, and coapplication of 500 microM 3-APMPA and 100 microM picrotoxin completely blocked the response. These results suggested that the conductance increase evoked by non-NMDA receptor agonists was mediated by release of GABA and activation of GABAC receptors, and most likely also GABAA receptors, on rod bipolar cells. 7. Kainate responses like those described above could not be evoked in bipolar cells in which the axon had been cut somewhere along its passage to the inner plexiform layer during the slicing procedure. This suggests that the response was dependent on the integrity of the axon terminal in the inner plexiform layer, known to receive GABAergic synaptic input from amacrine cells. 8. The results indicate that ionotropic glutamate receptors are not involved in mediating synaptic input from photoreceptors to rod bipolar cells and that an unconventional mechanism of GABA release from amacrine cells might operate in the inner plexiform layer.


1998 ◽  
Vol 57 (2) ◽  
pp. 241-247 ◽  
Author(s):  
Kazuhiko Yoshida ◽  
Junko Imaki ◽  
Yoshichika Okamoto ◽  
Hideki Iwakabe ◽  
Hitoshi Fujisawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document