Membrane currents evoked by ionotropic glutamate receptor agonists in rod bipolar cells in the rat retinal slice preparation

1996 ◽  
Vol 76 (1) ◽  
pp. 401-422 ◽  
Author(s):  
E. Hartveit

1. With the use of the whole cell voltage-clamp technique, I have recorded the current responses to ionotropic glutamate receptor agonists of rod bipolar cells in vertical slices of rat retina. Rod bipolar cells constitute a single population of cells and were visualized by infrared differential interference contrast video microscopy. They were targeted by the position of their cell bodies in the inner nuclear layer and, after recording, were visualized in their entirety by labeling with the fluorescent dye Lucifer yellow, which was included in the recording pipette. To study current-voltage relationships of evoked currents, voltage-gated potassium currents were blocked by including Cs+ and tetraethylammonium+ in the recording pipette. 2. Pressure application of the non-N-methyl-D-aspartate (non-NMDA) receptor agonists kainate and (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) from puffer pipettes evoked a long-latency conductance increase selective for chloride ions. When the intracellular chloride concentration was increased, the reversal potential changed, corresponding to the change in equilibrium potential for chloride. The response was evoked in the presence of 5 mM Co2+ and nominally O mM Ca2+ in the extracellular solution, presumably blocking all external Ca2(+)-dependent release of neurotransmitter. 3. The long latency of kainate-evoked currents in bipolar cells contrasted with the short-latency currents evoked by gamma-aminobutyric acid (GABA) and glycine in rod bipolar cells and by kainate in amacrine cells. 4. Application of NMDA evoked no response in rod bipolar cells. 5. Coapplication of AMPA with cyclothiazide, a blocker of agonist-evoked desensitization of AMPA receptors, enhanced the conductance increase compared with application of AMPA alone. Coapplication of the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione blocked the response to kainate and AMPA, indicating that the response was mediated by conventional ionotropic glutamate receptors. 6. The conductance increase evoked by non-NMDA receptor agonists could not be blocked by a combination of 100 microM picrotoxin and 10 microM strychnine. Application of the GABAC receptor antagonist 3-aminopropyl (methyl)phosphinic acid (3-APMPA) strongly reduced the response, and coapplication of 500 microM 3-APMPA and 100 microM picrotoxin completely blocked the response. These results suggested that the conductance increase evoked by non-NMDA receptor agonists was mediated by release of GABA and activation of GABAC receptors, and most likely also GABAA receptors, on rod bipolar cells. 7. Kainate responses like those described above could not be evoked in bipolar cells in which the axon had been cut somewhere along its passage to the inner plexiform layer during the slicing procedure. This suggests that the response was dependent on the integrity of the axon terminal in the inner plexiform layer, known to receive GABAergic synaptic input from amacrine cells. 8. The results indicate that ionotropic glutamate receptors are not involved in mediating synaptic input from photoreceptors to rod bipolar cells and that an unconventional mechanism of GABA release from amacrine cells might operate in the inner plexiform layer.

1990 ◽  
Vol 5 (1) ◽  
pp. 61-66 ◽  
Author(s):  
Heather M. Young ◽  
David I. Vaney

AbstractThis study has shown that the retinae of Prototherian (egg-laying) mammals possess two neuronal types that are present in non-mammalian retinae, but absent or morphologically different in the retinae of Eutherian (placental) mammals. First, endogenous serotonin-like immunoreactivity has been localized in a population of presumptive amacrine cells in the platypus retina, the first such report in a mammalian retina. Second, the protein kinase C-immunoreactive (PKC-IR) bipolar cells in the echidna retina appear similar to the PKC-IR bipolars in the chicken retina, in that their dendrites give rise to a Landolt's club and their axons are multistratified. By contrast, the PKC-IR rod bipolar cells in the rabbit and in the brushtail possum, a Metatherian (marsupial) mammal, have no Landolt's clubs and their axons form terminal lobes in the innermost stratum of the inner plexiform layer.


2004 ◽  
Vol 21 (4) ◽  
pp. 587-597 ◽  
Author(s):  
MICHAEL KALLONIATIS ◽  
DANIEL SUN ◽  
LISA FOSTER ◽  
SILKE HAVERKAMP ◽  
HEINZ WÄSSLE

Glutamate is a major neurotransmitter in the retina and other parts of the central nervous system, exerting its influence through ionotropic and metabotropic receptors. One ionotropic receptor, the N-methyl-D-aspartate (NMDA) receptor, is central to neural shaping, but also plays a major role during neuronal development and in disease processes. We studied the distribution pattern of different subunits of the NMDA receptor within the rat retina including quantifying the pattern of labelling for all the NR1 splice variants, the NR2A and NR2B subunits. The labelling pattern for the subunits was confined predominantly in the outer two-thirds of the inner plexiform layer. We also wanted to probe NMDA receptor function using an organic cation, agmatine (AGB); a marker for cation channel activity. Although there was an NMDA concentration-dependent increase in AGB labelling of amacrine cells and ganglion cells, we found no evidence of functional NMDA receptors on horizontal cells in the peripheral rabbit retina, nor in the visual streak where the type A horizontal cell was identified by GABA labelling. Basal AGB labelling within depolarizing bipolar cells was also noted. This basal bipolar cell AGB labelling was not modulated by NMDA and was completely abolished by the use of L-2-amino-4-phosphono-butyric acid, which is known to hyperpolarize retinal depolarizing bipolar cells. AGB is therefore not only useful as a probe of ligand-gated drive, but can also identify neurons that have constitutively open cationic channels. In combination, the NMDA receptor subunit distribution pattern and the AGB gating experiments strongly suggests that this ionotropic glutamate receptor is functional in the cone-driven pathway of the inner retina.


2002 ◽  
Vol 19 (4) ◽  
pp. 531-540 ◽  
Author(s):  
SALLY I. FIRTH ◽  
CAROLINA VARELA ◽  
PEDRO DE LA VILLA ◽  
DAVID W. MARSHAK

High levels of endogenous cholecystokinin (CCK) are present in the rat retina (Eskay & Beinfeld, 1982), but the cellular localization and physiological actions of CCK in the rat retina are uncertain. The goals of this study were to characterize the cells containing CCK, identify cell types that interact with CCK cells, and investigate the effects of CCK on rod bipolar cells. Rat retinas were labeled with antibody to gastrin-CCK (gCCK) using standard immunofluorescence techniques. Patch-clamp methods were used to record from dissociated rod bipolar cells from rats and mice. Gastrin-CCK immunoreactive (-IR) axons were evenly distributed throughout the retina in stratum 5 of the inner plexiform layer of the rat retina. However, the gCCK-IR somata were only detected in the ganglion cell layer in the peripheral retina. The gCCK-IR cells contained glutamate decarboxylase, and some of them also contained immunoreactive substance P. Labeled axons contacted PKC-IR rod bipolar cells, and recoverin-IR ON-cone bipolar cells. CCK-octapeptide inhibits GABAC but not GABAA mediated currents in dissociated rod bipolar cells.


1996 ◽  
Vol 13 (6) ◽  
pp. 1099-1107 ◽  
Author(s):  
Péter Buzás ◽  
Sára Jeges ◽  
Robert Gábriel

AbstractThe main route of information flow through the vertebrate retina is from the photoreceptors towards the ganglion cells whose axons form the optic nerve. Bipolar cells of the frog have been so far reported to contact mostly amacrine cells and the majority of input to ganglion cells comes from the amacrines. In this study, ganglion cells of frogs from two species (Bufo marinus, Xenopus laevis) were filled retrogradely with horseradish peroxidase. After visualization of the tracer, light-microscopic cross sections showed massive labeling of the somata in the ganglion cell layer as well as their dendrites in the inner plexiform layer. In cross sections, bipolar output and ganglion cell input synapses were counted in the electron microscope. Each synapse was assigned to one of the five equal sublayers (SLs) of the inner plexiform layer. In both species, bipolar cells were most often seen to form their characteristic synaptic dyads with two amacrine cells. In some cases, however, the dyads were directed to one amacrine and one ganglion cell dendrite. This type of synapse was unevenly distributed within the inner plexiform layer with the highest occurrence in SL2 both in Bufo and Xenopus. In addition, SL4 contained also a high number of this type of synapse in Xenopus. In both species, we found no or few bipolar to ganglion cell synapses in the marginal sublayers (SLs 1 and 5). In Xenopus, 22% of the bipolar cell output synapses went onto ganglion cells, whereas in Bufo this was only 10%. We conclude that direct bipolar to ganglion cell information transfer exists also in frogs although its occurrence is not as obvious and regular as in mammals. The characteristic distribution of these synapses, however, suggests that specific type of the bipolar and ganglion cells participate in this process. These contacts may play a role in the formation of simple ganglion cell receptive fields.


1991 ◽  
Vol 7 (6) ◽  
pp. 611-618 ◽  
Author(s):  
Roberta G. Pourcho ◽  
Michael T. Owczarzak

AbstractImmunocytochemical techniques were used to localize strychnine-sensitive glycine receptors in cat retina. Light microscopy showed staining in processes ramifying throughout the inner plexiform layer and in cell bodies of both amacrine and ganglion cells. At the electron-microscopic level, receptor immunoreactivity was seen to be clustered at sites postsynaptic to amacrine cells. In contrast, bipolar cells were neither presynaptic nor postsynaptic elements at sites of glycine receptor staining. Double-label studies verified the presence of glycine immunoreactivity in amacrine terminals presynaptic to glycine receptors. These findings support a role for glycine as an inhibitory neurotransmitter in amacrine cells.


1988 ◽  
Vol 1 (3) ◽  
pp. 297-305 ◽  
Author(s):  
Masao Tachibana ◽  
Akimichi Kaneko

AbstractBipolar cells make reciprocal synapses with amacrine cells in the inner plexiform layer; both feedforward connections and feedback connections are present. The physiological properties of the feedback synapse have not been well described. Since some amacrine cells are thought to be GABAergic, we examined bipolar cells for feedback input from γ-aminobtyric acid (GABA)ergic amacrine cells. Solitary bipolar cells were dissociated enzymatically from the goldfish retina. Cells were voltage clamped with a patch pipette and their GABA sensitivity was examined. GABA evoked responses in all bipolar cells with a large axon terminal, which were identified to be the rod dominant ON type, and in some bipolar cells with a small axon terminal. The highest GABA sensitivity was located at the axon terminal. The least effective dose was as low as 100 nM. A small insignificant response of high threshold was evoked when GABA was applied to the dendrite and soma. GABA increased the Cl conductance and caused membrane hyperpolarization. The bipolar cells had the GABAA receptor coupled with a benzodiazepine receptor. The GABA-evoked response was not susceptible to Co ions, which suppressed the GABA-induced responses in turtle cones by 50% at 5 fiM concentration. Incomplete desensitization was observed, suggesting that the GABAergic pathway seems capable of transmitting signals tonically. The present results strongly indicate that the rod-dominant ON-type bipolar cells and some bipolar cells with a small axon terminal receive negative feedback inputs from GABAergic amacrine cells.


2018 ◽  
Author(s):  
Robert E. Marc ◽  
Crystal Sigulinsky ◽  
Rebecca L. Pfeiffer ◽  
Daniel Emrich ◽  
James R. Anderson ◽  
...  

AbstractAll superclasses of retinal neurons display some form of electrical coupling including the key neurons of the inner plexiform layer: bipolar cells (BCs), amacrine or axonal cells (ACs) and ganglion cells (GCs). However, coupling varies extensively by class. For example, mammalian rod bipolar cells form no gap junctions at all, while all cone bipolar cells form class-specific coupling arrays, many of them homocellular in-superclass arrays. Ganglion cells are unique in that classes with coupling predominantly form heterocellular cross-class arrays of ganglion cell::amacrine cell (GC::AC) coupling in the mammalian retina. Ganglion cells are the least frequent superclass in the inner plexiform layer and GC::AC gap junctions are sparsely arrayed amidst massive cohorts of AC::AC, bipolar cell BC::BC, and AC::BC gap junctions. Many of these gap junctions and most ganglion cell gap junctions are suboptical, complicating analysis of specific ganglion cells. High resolution 2 nm TEM analysis of rabbit retinal connectome RC1 allows quantitative GC::AC coupling maps of identified ganglion cells. Ganglion cells classes apparently avoid direct cross-class homocellular coupling altogether even though they have opportunities via direct membrane touches, while transient OFF alpha ganglion cells and transient ON directionally selective (DS) ganglion cells are strongly coupled to distinct amacrine / axonal cell cohorts.A key feature of coupled ganglion cells is intercellular metabolite flux. Most GC::AC coupling involves GABAergic cells (γ+ amacrine cells), which results in significant GABA flux into ganglion cells. Surveying GABA coupling signatures in the ganglion cell layer across species suggests that the majority of vertebrate retinas engage in GC::AC coupling.Multi-hop synaptic queries of the entire RC1 connectome clearly profiles the coupled amacrine and axonal cells. Photic drive polarities and source bipolar cell class selec-tivities are tightly matched across coupled cells. OFF alpha ganglion cells are coupled to OFF γ+ amacrine cells and transient ON DS ganglion cells are coupled to ON γ+ amacrine cells including a large interstitial axonal cell (IAC). Synaptic tabulations show close matches between the classes of bipolar cells sampled by the coupled amacrine and ganglion cells. Further, both ON and OFF coupling ganglion networks show a common theme: synaptic asymmetry whereby the coupled γ+ neurons are also presynaptic to ganglion cell dendrites from different classes of ganglion cells outside the coupled set. In effect, these heterocellular coupling patterns enable an excited ganglion cell to directly inhibit nearby ganglion cells of different classes. Similarly, coupled γ+ amacrine cells engaged in feedback networks can leverage the additional gain of bipolar cell synapses in shaping the signaling of a spectrum of downstream targets based on their own selective coupling with ganglion cells.


1994 ◽  
Vol 11 (6) ◽  
pp. 1193-1203 ◽  
Author(s):  
Chen-Yu Yang ◽  
Stephen Yazulla

AbstractThe presence of inhibitory bipolar cells in salamander retina was investigated by a comparative analysis of the distribution of glutamate- and GABA-immunoreactivities (GLU-IR; GABA-IR) using a postembedding immunocytochemical method. GLU-IR was found in virtually all photoreceptors, bipolar cells and ganglion cells, neuronal elements that transfer information vertically through the retina. GLU-IR also was found in numerous amacrine cells in the mid and proximal inner nuclear layer as well as in the cytoplasm of horizontal cells, while the nucleus of horizontal cells was either lightly labeled or not labeled at all. GLU-IR was found in the outer plexiform layer and intensely in the inner plexiform layer, in which there was no apparent sublamination. Forty-seven percent of Type IB bipolar cells in the distal inner nuclear layer and 13% of the displaced bipolar cells were GABA-IR. All bipolar cells were also GLU-IR, indicating that GABA-IR bipolar cells were a subset of GLU-IR bipolar cells rather than a separate population. About 12% of the Type IB bipolar cells were moderately GABA-IR and likely comprised a GABAergic subtype. GLU-IR levels in the presumed GABAergic bipolar cells were higher than in other purely GLU-IR bipolar cells suggesting that these GABA-IR bipolar cells are glutamatergic as well. All of the displaced bipolar cells were only lightly GABA-IR, indicating that displaced bipolar cells comprise a more homogeneous class of glutamatergic cell than orthotopic bipolar cells. GAD-IR co-localized with GABA-IR in orthotopic but not displaced bipolar cells, further supporting the idea that some orthotopic bipolar cells are GABAergic. A small proportion of bipolar cells in salamander retina contain relatively high levels of both GABA and glutamate. Co-release of these substances by bipolar cells could contribute to the “push-pull” modulation of ganglion cell responses.


2002 ◽  
Vol 19 (5) ◽  
pp. 549-562 ◽  
Author(s):  
BOZENA FYK-KOLODZIEJ ◽  
WENHUI CAI ◽  
ROBERTA G. POURCHO

Immunocytochemical localization was carried out for five isoforms of protein kinase C (PKC) in the cat retina. In common with other mammalian species, PKCα was found in rod bipolar cells. Staining was also seen in a small population of cone bipolar cells with axon terminals ramifying near the middle of the inner plexiform layer (IPL). PKCβI was localized to rod bipolar cells, one class of cone bipolar cell, and numerous amacrine and displaced amacrine cells. Staining for PKCβII was seen in three types of cone bipolar cells as well as in amacrine and ganglion cells. Immunoreactivity for both PKCε and PKCζ was found in rod bipolar cells; PKCε was also seen in a population of cone bipolar cells and a few amacrine and ganglion cells whereas PKCζ was found in all ganglion cells. Double-label immunofluorescence studies showed that dendrites of the two PKCβII-positive OFF-cone bipolar cells exhibit immmunoreactivity for the kainate-selective glutamate receptor GluR5. The third PKCβII cone bipolar is an ON-type cell and did not stain for GluR5. The retinal distribution of these isoforms of PKC is consistent with a role in modulation of various aspects of neurotransmission including synaptic vesicle release and regulation of receptor molecules.


1991 ◽  
Vol 6 (6) ◽  
pp. 629-639 ◽  
Author(s):  
Brigitte Müller ◽  
Leo Peichl

AbstractThe tree shrew has a cone-dominated retina with a rod proportion of 5%, in contrast to the common mammalian pattern of rod-dominated retinae. As a first step to elucidate the rod pathway in the tree shrew retina, we have demonstrated the presence of rod bipolar cells and studied their morphology and distribution by light and electron microscopy.Rod bipolar cells were labeled with an antiserum against the protein kinase C (PKC), a phosphorylating enzyme. Intense PKC immunoreactivity was found in perikarya, axons, and dendrites of rod bipolar cells. The cell bodies are located in the sclerad part of the inner nuclear layer, the dendrites ascend to the outer plexiform layer where they are postsynaptic to rod spherules, and an axon descends towards the inner plexiform layer (IPL). The axons branch, and terminate in the vitread third of the IPL where mammalian rod bipolar cells are known to terminate. Two amacrine cell processes are always seen as the postsynaptic elements (dyads). Dendritic and axonal arbors of rod bipolar cells are rather large, up to 100 μm in diameter. The topographical distribution of the rod bipolar cells was analyzed quantitatively in tangential sections.Their density ranges from 300 cells/mm2 in peripheral retina to 900 cells/mm2 more centrally. The distribution is rather flat with no local extremes. Consistent with the low rod proportion in tree shrew, the rod bipolar cell density is low compared to the rod-dominated cat retina for example (36,000-47,000 rod bipolar cells/mm2). Rod-to-rod bipolar cell ratios in the tree shrew retina range from smaller than 1 to about 7, and thus are also lower than in cat.


Sign in / Sign up

Export Citation Format

Share Document