An adaptive Reichardt detector model of motion adaptation in insects and mammals

1997 ◽  
Vol 14 (4) ◽  
pp. 741-749 ◽  
Author(s):  
Colin W.G. Clifford ◽  
Michael R. Ibbotson ◽  
Keith Langley

AbstractThere are marked similarities in the adaptation to motion observed in wide-field directional neurons found in the mammalian nucleus of the optic tract and cells in the insect lobula plate. However, while the form and time scale of adaptation is comparable in the two systems, there is a difference in the directional properties of the effect. A model based on the Reichardt detector is proposed to describe adaptation in mammals and insects, with only minor modifications required to account for the differences in directionality. Temporal-frequency response functions of the neurons and the model are shifted laterally and compressed by motion adaptation. The lateral shift enhances dynamic range and differential motion sensitivity. The compression is not caused by fatigue, but is an intrinsic property of the adaptive process resulting from interdependence of temporal-frequency tuning and gain in the temporal filters of the motion detectors.

2021 ◽  
Author(s):  
Kit D. Longden ◽  
Anna Schützenberger ◽  
Ben J Hardcastle ◽  
Holger G Krapp

The optokinetic nystagmus is a gaze-stabilizing mechanism reducing motion blur by rapid eye rotations against the direction of visual motion, followed by slower syndirectional eye movements minimizing retinal slip speed. Flies control their gaze through head turns controlled by neck motor neurons receiving input directly, or via descending neurons, from well-characterized directional-selective interneurons sensitive to visual wide-field motion. Locomotion increases the gain and speed sensitivity of these interneurons, while visual motion adaptation in walking animals has the opposite effects. To find out whether flies perform an optokinetic nystagmus, and how it may be affected by locomotion and visual motion adaptation, we recorded head movements of blowflies on a trackball stimulated by progressive and rotational visual motion. Flies flexibly responded to rotational stimuli with optokinetic nystagmus-like head movements, independent of their locomotor state. The temporal frequency tuning of these movements, though matching that of the upstream directional-selective interneurons, was only mildly modulated by walking speed or visual motion adaptation. Our results suggest flies flexibly control their gaze to compensate for rotational wide-field motion by a mechanism similar to an optokinetic nystagmus. Surprisingly, the mechanism is less state-dependent than the response properties of directional-selective interneurons providing input to the neck motor system.


2002 ◽  
Vol 88 (5) ◽  
pp. 2224-2231 ◽  
Author(s):  
Nicholas S. C. Price ◽  
Michael R. Ibbotson

We describe the responses during and after motion of slow cells, which are a class of direction-selective neurons in the pretectal nucleus of the optic tract (NOT) of the wallaby. Neurons in the NOT respond to optic flow generated by head movements and drive compensatory optokinetic eye movements. Motion in the preferred direction produces increased firing rates in the cells, whereas motion in the opposite direction inhibits their high spontaneous activities. Neurons were stimulated with moving spatial sinusoidal gratings through a range of temporal and spatial frequencies. The slow cells were maximally stimulated at temporal frequencies <1 Hz and spatial frequencies of 0.13–1 cpd. During motion, the responses oscillate at the fundamental temporal frequency of the grating but not at higher-order harmonics. There is prolonged excitation after preferred direction motion and prolonged inhibition after anti-preferred direction motion, which are referred to as same-sign after-responses (SSARs). This is the first time that the response properties of neurons with SSARs have been reported and modeled in detail for neurons in the NOT. Slow cell responses during and after motion are modeled using an array of Reichardt-type motion detectors that include band-pass temporal prefilters. The oscillatory behavior during motion and the SSARs can be simulated accurately with the model by manipulating time constants associated with temporal filtering in the prefilters and motion detectors. The SSARs of slow cells are compared with those of previously described direction-selective neurons, which usually show transient inhibition or excitation after preferred or anti-preferred direction motion, respectively. Possible functional roles for slow cells are discussed in the context of eye movement control.


1999 ◽  
Vol 16 (6) ◽  
pp. 991-1000 ◽  
Author(s):  
MICHAEL R. IBBOTSON ◽  
COLIN W.G. CLIFFORD ◽  
RICHARD F. MARK

A nonlinear interaction between signals from at least two spatially displaced receptors is a fundamental requirement for a direction-selective motion detector. This paper characterizes the nonlinear mechanism present in the motion detector pathway that provides the input to wide-field directional neurons in the nucleus of the optic tract of the wallaby, Macropus eugenii. An apparent motion stimulus is used to reveal the interactions that occur between adjacent regions of the receptive fields of the neurons. The interaction between neighboring areas of the field is a nonlinear facilitation that is accurately predicted by the outputs of an array of correlation-based motion detectors (Reichardt detectors). Based on the similarity between the output properties of the detector array and the real neurons, it is proposed that the interaction between neighboring regions of the receptive field is a second-order nonlinearity such as a multiplication. The results presented here for wallaby neurons are compared to data collected from directional systems in other species.


1991 ◽  
Vol 73 (3) ◽  
pp. 765-766
Author(s):  
Mark C. Chorlton ◽  
David C. Finlay ◽  
Marx L. Manning ◽  
W. Ross Fulham ◽  
John Boulton

Differential motion thresholds were measured at eccentricities of 9° and 16.6° using computer-generated sinusoidal gratings. Three spatial frequencies (0.51, 0.25, and 0.13 cycles/deg) were examined at reference velocities of 2, 4, 8, 16, 52, and 48 deg/sec. Minimum differential velocity thresholds were between 20 and 30% of the reference velocities for the three spatial frequencies at both eccentricities Increasing eccentricity produced an increase in the velocity at which minimum velocity discrimination occurred. Temporal frequency tuning was between 4 and 8 Hz, regardless of eccentricity.


2020 ◽  
Author(s):  
F. Claire Rind ◽  
Lisa Jones ◽  
Ghaith Tarawneh ◽  
Jenny F. M. Read

AbstractWe designed visual stimuli to characterise the motion-detectors that underlie target tracking behaviour in the mantis. The first was a small, moving, stripy, bug-like target, made by opening a moving, Gabor-filtered window onto an extended, moving, sinewave pattern. The mantis tracked this bug-like target, but the likelihood of tracking the bug depended only on the temporal frequency of its motion. In contrast, optomotor responses to the extended moving sinewave pattern alone depended on both spatial and temporal frequency of the pattern, as expected from classical, correlation-based motion-detectors. In another experiment, we used small moving objects that were made up of chequerboard patterns of randomly arranged dark squares, and found objects with smaller sized chequers were tracked relatively less. Response suppression like this, when the internal detail of an object increases, suggests the presence of lateral inhibition between inputs to the motion-detectors for target tracking. Finally, wide-field motion of a chequerboard background near the target, balanced so no optomotor responses were evoked, suppressed tracking proportionally both to the nearness of the background to the target and to the size its dark chequered squares. Backgrounds with smaller sized squares produced more suppression. This effect has been used as a demonstration of lateral inhibition in detectors for looming-motion and makes their response greatest to an expanding outer edge, an image produced by an approaching object. Our findings point to a new role for a looming-type motion-detector in mantis target tracking. We also discuss the suitability of several large lobula-complex neurons for this role.Summary StatementLateral inhibition shown by motion-detectors underlying target tracking by the praying mantis Sphrodromantis lineola (Linnaeus).


2008 ◽  
Vol 128 (7) ◽  
pp. 1015-1022
Author(s):  
Sheng Ge ◽  
Makoto Ichikawa ◽  
Atsushi Osa ◽  
Keiji Iramina ◽  
Hidetoshi Miike

2010 ◽  
Vol 5 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Alice Rokszin ◽  
Zita Márkus ◽  
Gábor Braunitzer ◽  
Antal Berényi ◽  
Marek Wypych ◽  
...  

AbstractOur study compares the spatio-temporal visual receptive field properties of different subcortical stages of the ascending tectofugal visual system. Extracellular single-cell recordings were performed in the superficial (SCs) and intermediate (SCi) layers of the superior colliculus (SC), the suprageniculate nucleus (Sg) of the posterior thalamus and the caudate nucleus (CN) of halothane-anesthetized cats. Neuronal responses to drifting gratings of various spatial and temporal frequencies were recorded. The neurons of each structure responded optimally to low spatial and high temporal frequencies and displayed narrow spatial and temporal frequency tuning. The detailed statistical analysis revealed that according to its stimulus preferences the SCs has markedly different spatio-temporal properties from the homogeneous group formed by the SCi, Sg and CN. The SCs neurons preferred higher spatial and lower temporal frequencies and had broader spatial tuning than the other structures. In contrast to the SCs the visually active SCi, as well as the Sg and the CN neurons possessed consequently similar spatio-temporal preferences. These data support our hypothesis that the visually active SCi, Sg and CN neurons form a homogeneous neuronal population given a similar spatio-temporal frequency preference and a common function in processing of dynamic visual information.


1992 ◽  
Vol 68 (5) ◽  
pp. 1654-1666 ◽  
Author(s):  
F. C. Rind ◽  
P. J. Simmons

1. The "descending contralateral movement detector" (DCMD) neuron in the locust has been challenged with a variety of moving stimuli, including scenes from a film (Star Wars), moving disks, and images generated by computer. The neuron responds well to any rapid movement. For a dark object moving along a straight path at a uniform velocity, the DCMD gives the strongest response when the object travels directly toward the eye, and the weakest when the object travels away from the eye. Instead of expressing selectivity for movements of small rather than large objects, the DCMD responds preferentially to approaching objects. 2. The neuron shows a clear selectivity for approach over recession for a variety of sizes and velocities of movement both of real objects and in simulated movements. When a disk that subtends > or = 5 degrees at the eye approaches the eye, there are two peaks in spike rate: one immediately after the start of movement; and a second that builds up during the approach. When a disk recedes from the eye, there is a single peak in response as the movement starts. There is a good correlation between spike rate and angular acceleration of the edges of the image over the eye. 3. When an object approaches from a distance sufficient for it to subtend less than one interommatidial angle at the start of its approach, there is a single peak in response. The DCMD tracks the approach, and, if the object moves at 1 m/s or faster, the spike rate increases throughout the duration of object movement. The size of the response depends on the speed of approach. 4. It is unlikely that the DCMD encodes the time to collision accurately, because the response depends on the size as well as the velocity of an approaching object. 5. Wide-field movements suppress the response to an approaching object. The suppression varies with the temporal frequency of the background pattern. 6. Over a wide range of contrasts of object against background, the DCMD gives a stronger response to approaching than to receding objects. For low contrasts, the selectivity is greater for objects that are darker than the background than for objects that are lighter.


Some computational theories of motion perception assume that the first stage en route to this perception is the local estimate of image velocity. However, this assumption is not supported by data from the primary visual cortex. Its motion sensitive cells are not selective to velocity, but rather are directionally selective and tuned to spatio-temporal frequen­cies. Accordingly, physiologically based theories start with filters selec­tive to oriented spatio-temporal frequencies. This paper shows that computational and physiological theories do not necessarily conflict, because such filters may, as a population, compute velocity locally. To prove this point, we show how to combine the outputs of a class of frequency tuned filters to detect local image velocity. Furthermore, we show that the combination of filters may simulate ‘Pattern’ cells in the middle temporal area (MT), whereas each filter simulates primary visual cortex cells. These simulations include three properties of the primary cortex. First, the spatio-temporal frequency tuning curves of the in­dividual filters display approximate space-time separability. Secondly, their direction-of-motion tuning curves depend on the distribution of orientations of the components of the Fourier decomposition and speed of the stimulus. Thirdly, the filters show facilitation and suppression for responses to apparent motions in the preferred and null directions, respect­ively. It is suggested that the MT’s role is not to solve the aperture problem, but to estimate velocities from primary cortex information. The spatial integration that accounts for motion coherence may be postponed to a later cortical stage.


2010 ◽  
Vol 31 (6) ◽  
pp. 1043-1062 ◽  
Author(s):  
Hsin-Hao Yu ◽  
Richa Verma ◽  
Yin Yang ◽  
Heath A. Tibballs ◽  
Leo L. Lui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document