intrinsic property
Recently Published Documents


TOTAL DOCUMENTS

658
(FIVE YEARS 150)

H-INDEX

52
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Manisha Poudyal ◽  
Komal Patel ◽  
Ajay Singh Sawner ◽  
Laxmikant Gadhe ◽  
Pradeep Kadu ◽  
...  

Liquid-liquid phase separation (LLPS) has emerged as a crucial biological mechanism for sequestering macromolecules (such as proteins and nucleic acids) into membraneless organelles in cells. Unstructured and intrinsically disordered domains are known to facilitate multivalent interactions driving protein LLPS. We hypothesized that LLPS could be an intrinsic property of proteins/polypeptides at their high intermolecular interaction regime. To examine this, we studied many (a total of 23) proteins/polypeptides with different structures and sequences for LLPS study using molecular crowder polyethylene glycol (PEG-8000). We showed that all proteins and even highly charged polypeptides (under study) can undergo liquid condensate formation, however with different phase space and conditions. Using a single component and combinations of protein multicomponent (co-LLPS) systems, we establish that a variety of intermolecular interactions can drive proteins/polypeptides LLPS.


2021 ◽  
Vol 14 (4) ◽  
pp. 1869-1880
Author(s):  
Sanjukta Mishra ◽  
Swastik Acharya

Probiotics are defined as non-pathogenic live microorganisms that, when administered in adequate amounts, confer health benefits on the host. Association of probiotics with human beings has a lot of history. Well known as 'health-friendly bacteria', they are widely used commercially as a functional food. The popularity of probiotics has gone exponentially high due to an increasing number of clinical trials, supporting their beneficial effects. Several in vivo and in-vitro experimental evidence supports strain-specific and disease-specific probiotic efficacy to prevent and ameliorate antibiotic-associated diarrhoea, traveller's diarrhoea, ulcerative colitis, and many more. Besides, numerous recent studies have reported that probiotics could have a significant effect in alleviating various metabolic, lifestyle and diet-related disorders like obesity, type 2 diabetes, metabolic syndrome, irritable bowel syndrome Strains of Bifidobacterium, Lactobacillus and Saccharomyces boulardii are the most commonly used as probiotics. Safety, efficacy, pathogenicity, infectivity, intrinsic property, virulence factors are to be addressed during probiotic selection. The underlying mechanisms of probiotics effects are still not fully elucidated and have been under intensive research. Numerous diverse, strain-specific probiotic mechanisms have been proposed, which include early colonization of perturbed microbes, competitive exclusion of pathogens, short-chain volatile fatty acid production, alteration of gut pH, immunomodulation and many more. Considering the remarkable influence on human health, probiotics seem to be alluring attractive agents to promote human health conditions and to improve the quality of life against several diseases. This review discusses the current documentation and recent advances on probiotics and their possible health attributes, in scientific literature, focusing on diverse, heterogeneous, and strain-specific mechanisms of action. Randomised human controlled clinical trials are needed to reconfirm its safety and beneficial effects.


2021 ◽  
Author(s):  
Ola Kenji Forslund ◽  
Daniel Andreica ◽  
Hiroto Ohta ◽  
Masaki Imai ◽  
Chishiro Michioka ◽  
...  

Abstract The ferromagnetic (FM) nature of the metallic LaCo2P2 was investigated with the positive muon spin rotation, relaxation and resonance (μ+SR) technique. Transverse and zero field μ+SR measurements revealed that the compound enters a long range FM ground state at TZFC = 135.00(1) K, consistent with previous studies. Based on the reported FM structure, the internal magnetic field was computed at the muon sites, which were predicted with first principles calculations. The computed result agree well with the experimental data. Moreover, although LaCo2P2 is a paramagnet at higher temperatures T > 160 K, it enters a short range ordered (SRO) magnetic phase for T ZF C < T ≤160 K. Measurements below the vicinity of T ZF C revealed that the SRO phase co-exists with the long range FM order at temperatures 124 K ≤T ≤T ZF C. Such co-existence is an intrinsic property and may be explained by an interplay between spin and lattice degree of freedoms.


Author(s):  
Shirun Yan

Abstract Adachi (ECS J. Solid State Sci. Technol.,10, 076007(2021)) reported that an anomalous enhancement of integrated intensity of Mn4+ luminescence (IPL) in A2XF6:Mn4+ phosphors with increasing lattice temperature was an intrinsic property of the phosphors due to the increased phonon number that makes it possible to gain the parity and spin-forbidden 2Eg → 4A2g transitions.I argue in this comment that it seems still unconvincing to ascribe the anomalous increase of IPL with temperature as an intrinsic property of Mn4+-doped fluorides. Since theoretical derivations of the formulas expressing temperature dependence of the intensities were based on an unjustified assumption.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012044
Author(s):  
Constantin Meis

Abstract Without stating any assumptions or making postulates we show that the electromagnetic quantum vacuum plays a primary role in quantum electrodynamics, particle physics, gravitation and cosmology. Photons are local oscillations of the electromagnetic quantum vacuum field guided by a non-local vector potential wave function. The electron-positron elementary charge emerges naturally from the vacuum field and is related to the photon vector potential. We establish the masse-charge equivalence relation showing that the masses of all particles (leptons, mesons, baryons) and antiparticles have electromagnetic origin. In addition, we deduce that the gravitational constant G is an intrinsic property of the electromagnetic quantum vacuum putting in evidence the electromagnetic nature of gravity. We show that Newton’s gravitational law is equivalent to Coulomb’s electrostatic law. Furthermore, we draw that G is the same for matter and antimatter but gravitational forces could be repulsive between particles and antiparticles because their masses bear naturally opposite signs. The electromagnetic quantum vacuum field may be the natural link between particle physics, quantum electrodynamics, gravitation and cosmology constituting a basic step towards a unified field theory.


Author(s):  
Wei-Xing Xu

In this work we calculated the magnetism from the movement of electron in hydrogen atom and found that the contributions from the electron in the same main quantum levels to the magnetism of the hydrogen atom are the same; but the contributions from the electron in different main quantum levels to the magnetism of the hydrogen atom are the eigenvalue dependent instead. These facts tell us that the concepts about “intrinsic property” and “relativity effect” of electron spin should be discarded, and accordingly, the quantum mechanics should be rebuilt.


2021 ◽  
Author(s):  
Sophia Wienbar ◽  
Gregory Schwartz

The output of spiking neurons depends both on their synaptic inputs and on their intrinsic properties. Retinal ganglion cells (RGCs), the spiking projection neurons of the retina, comprise over 40 different types in mice and other mammals, each tuned to different features of visual scenes. The circuits providing synaptic input to different RGC types to drive feature selectivity have been studied extensively, but there has been substantially less research aimed at understanding how the intrinsic properties of RGCs differ and how those differences impact feature selectivity. Here, we introduce an RGC type in the mouse, the Bursty Suppressed-by-Contrast (bSbC) RGC, whose contrast selectivity is shaped by its intrinsic properties. Surprisingly, when we compare the bSbC RGC to the OFF sustained alpha (OFFsA) RGC that receives similar synaptic input, we find that the two RGC types exhibit starkly different responses to an identical stimulus. We identified spike generation as the key intrinsic property behind this functional difference; the bSbC RGC undergoes depolarization block in conditions where the OFFsA RGC maintains a high spike rate. Pharmacological experiments, imaging, and compartment modeling demonstrate that these differences in spike generation are the result of differences in voltage-gated sodium channel conductances. Our results demonstrate that differences in intrinsic properties allow these two RGC types to detect and relay distinct features of an identical visual stimulus to the brain.


Algorithms ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 301
Author(s):  
Umberto Michelucci ◽  
Michela Sperti ◽  
Dario Piga ◽  
Francesca Venturini ◽  
Marco A. Deriu

This paper presents the intrinsic limit determination algorithm (ILD Algorithm), a novel technique to determine the best possible performance, measured in terms of the AUC (area under the ROC curve) and accuracy, that can be obtained from a specific dataset in a binary classification problem with categorical features regardless of the model used. This limit, namely, the Bayes error, is completely independent of any model used and describes an intrinsic property of the dataset. The ILD algorithm thus provides important information regarding the prediction limits of any binary classification algorithm when applied to the considered dataset. In this paper, the algorithm is described in detail, its entire mathematical framework is presented and the pseudocode is given to facilitate its implementation. Finally, an example with a real dataset is given.


2021 ◽  
Vol MA2021-02 (2) ◽  
pp. 202-202
Author(s):  
Mariya Kalapsazova ◽  
Ekaterina Zhecheva ◽  
Radostina Stoyanova
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document