angular acceleration
Recently Published Documents


TOTAL DOCUMENTS

765
(FIVE YEARS 149)

H-INDEX

39
(FIVE YEARS 4)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 584
Author(s):  
James Tooby ◽  
Dan Weaving ◽  
Marwan Al-Dawoud ◽  
Gregory Tierney

Instrumented mouthguards (iMG) were used to collect head acceleration events (HAE) in men’s professional rugby league matches. Peak linear acceleration (PLA), peak angular acceleration (PAA) and peak change in angular velocity (ΔPAV) were collected using custom-fit iMG set with a 5 g single iMG-axis recording threshold. iMG were fitted to ten male Super League players for thirty-one player matches. Video analysis was conducted on HAE to identify the contact event; impacted player; tackle stage and head loading type. A total of 1622 video-verified HAE were recorded. Approximately three-quarters of HAE (75.7%) occurred below 10 g. Most (98.2%) HAE occurred during tackles (59.3% to tackler; 40.7% to ball carrier) and the initial collision stage of the tackle (43.9%). The initial collision stage resulted in significantly greater PAA and ΔPAV than secondary contact and play the ball tackle stages (p < 0.001). Indirect HAE accounted for 29.8% of HAE and resulted in significantly greater ΔPAV (p < 0.001) than direct HAE, but significantly lower PLA (p < 0.001). Almost all HAE were sustained in the tackle, with the majority occurring during the initial collision stage, making it an area of focus for the development of player protection strategies for both ball carriers and tacklers. League-wide and community-level implementation of iMG could enable a greater understanding of head acceleration exposure between playing positions, cohorts, and levels of play.


2022 ◽  
Author(s):  
Jian-Jun Meng ◽  
Xiao-Tong Chen ◽  
Wen-Zhe Qi ◽  
De-Cang Li ◽  
Ru-Xun Xu

Abstract To solve the problem of abnormal angular velocity and angular acceleration in manipulator trajectory motion controlled by quintic spline interpolation algorithm, a manipulator trajectory control algorithm combined with moving average filtering algorithm was proposed. Based on the quintic spline interpolation algorithm, the moving average filtering algorithm was used to clean the abnormal data under the quintic spline interpolation. And the recursive forward dynamics model based on joint space motion was used to design the trajectory motion control of the manipulator. The simulation results show that the manipulator trajectory control algorithm combined with the moving average filtering algorithm has strong constraint ability of diagonal velocity and angular acceleration, and 67% of the maximum velocity and maximum acceleration of the joint axis of the designed manipulator trajectory are significantly reduced, and the curve is smoother.


2022 ◽  
pp. 1-18
Author(s):  
Yuanfeng Xia ◽  
Jian Pang

Abstract The transient vibro-impacts induced by clearance between the connected rotors in driveline system easily causes serious transient noise and vibration, especially between the gear teeth with backlash. To analyze the transient vibro-impacts of the driveline system excited by a step-down engine torque, a new piecewise nonlinear clearance element with time-varying stiffness and oil squeeze damping is proposed, and an 8 degree-of-freedom lumped parameters model with the new piecewise nonlinear clearance elements is established. The transient vibro-impact phenomena of the vehicle driveline during fast disengagement of the clutch are numerically simulated. Colormaps of angular acceleration and vibro-impact force shows the difference of frequency components from transient impact to stable tooth-meshing. The phase plane reveals the phenomenon of multiple impacts and rebounds in each transient impact, and shows the relationship between the relative contact displacement and velocity. The frequency responses of the angular velocity, angular acceleration and vibro-impact forces with time-varying stiffness and linear stiffness are compared respectively. Compared with the widely used clearance element with piecewise linear stiffness, the new nonlinear clearance element with the piecewise nonlinear time-varying stiffness can better reveal the transient vibro-impact responses between the driving and driven gears. Lastly, the transient vibro-impact results of driveline system are verified by the vehicle experiments.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 106
Author(s):  
Yunxia Li ◽  
Lei Li

An automated mechanical transmission (AMT) is proposed as a new soft starter for medium-scale belt conveyors in this paper. The AMT is used to start the belt conveyor and shift gears step by step to make the belt conveyor accelerate softly. Based on analyzing common soft-starting acceleration curves, a segmented belt acceleration curve is proposed as a new soft-starting acceleration curve. By analyzing the AMT soft-starting system, the system modeling is built and the AMT output shaft’s angular acceleration is proposed to be controlled to control the belt acceleration. The AMT soft-starting simulation model is established in the environment of AMESim, and simulation results of the soft-starting process from the first to eighth gear positions are given. The main parameter curves of the AMT soft-starting system including the belt, driving pulley, and AMT output shaft are analyzed. The simulation model can indicate the viscoelastic property of the belt. The simulation results prove that the segmented belt acceleration is appropriate for a medium-scale belt conveyor and provide a theoretical and reasonable basis for using an AMT as a soft starter.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261560
Author(s):  
Yosuke Eriguchi ◽  
Xiaoxue Gu ◽  
Naoto Aoki ◽  
Maiko Nonaka ◽  
Ryunosuke Goto ◽  
...  

Background Neck motor tics in Tourette’s syndrome can cause severe neck complications. Although addressed in a few longitudinal studies, the clinical course of Tourette’s syndrome has not been quantitatively assessed. We had previously developed a method for quantifying the angular movements of neck tics using a compact gyroscope. Here, we present a follow-up study aimed at elucidating the clinical course of neck tics at both the group and individual levels. Methods Eleven patients with Tourette’s syndrome from our previous study participated in the present study, and their neck tics were recorded during a 5-min observation period. The severity of neck symptoms was assessed using the Yale Global Tic Severity Scale. The peak angular velocities and accelerations, tic counts, and severity scores in our previous study (baseline) and the present study (2-year follow-up) were compared at the group and individual levels. The individual level consistency between baseline and follow-up were calculated using intra-class correlation coefficients (ICCs, one-way random, single measure). Results At the group level, no significant change was observed between baseline and follow-up. At the individual level, angular velocity (ICC 0.73) and YGTSS scores (ICC 0.75) had substantial consistency over the two time points, and angular acceleration (ICC 0.59) and tic counts (ICC 0.69) had moderate consistency. Conclusions The intensity and frequency of neck tics did not change over time. Therefore, quantification of angular neck motor tics will aid in identifying patients with neck tics at high risk for severe neck complications.


2021 ◽  
Vol 14 (1) ◽  
pp. 126
Author(s):  
Fan Yang ◽  
Lei Liang ◽  
Changqing Wang ◽  
Zhicai Luo

The satellite gravity mission GRACE(-FO) has not yet reached its designed baseline accuracy. Previous studies demonstrated that the deficiency in the sensor system or the related signal processing might be responsible, which in turn motivates us to keep revising the sensor data processing, typically the spacecraft’s attitude. Many efforts in the past have been made to enhance the attitude modeling for GRACE, for instance, the latest release reprocesses the attitude by fusing the angular acceleration with the star camera/tracker (SC) measurements, which helps to reduce the error in Level-2 temporal gravity fields. Therefore, in addition to GRACE, revising GRACE-FO attitude determination might make sense as well. This study starts with the most original raw GRACE-FO Level-1A data including those from three SCs and one IMU (Inertial Measurement Unit) sensors, and manage to generate a new publicly available Level-1B attitude product called HUGG-01 covering from June 2018 to December 2020, using our independently-developed software. The detailed treatment of individual payload is present in this study, and an indirect Kalman filter method is introduced to fuse the multiple sensors to acquire a relatively stable and precise attitude estimation. Unlike the direct SC combination method with a predefined weight as recommended in previous work, we propose an involvement of each SC measurement in the Kalman filter to enable a dynamic weight adjustment. Intensive experiments are further carried out to assess the HUGG-01, which demonstrate that the error level of HUGG-01 is entirely within the design requirement, i.e., the resulting KBR pointing variations are well controlled within 1 mrad (pitch), 5 mrad (roll) and 1 mrad (yaw). Moreover, comparisons with the official JPL-V04 attitude product demonstrate an equivalent performance in the low-to-middle spectrum, with even a slightly lower noise level (in the high spectrum) than JPL-V04. Further analysis on KBR range-rate residuals and gravity recovery on Jan 2019 indicates that, i.e., RMS of the difference (HUGG-01 minus JPL-V04) for the range rate is less than 3.234×10−8 m/s, and the amplitude of geoid height difference is approximately 0.5 cm. Both differences are below the sensitivity of the state-of-the-art satellite gravity mission, demonstrating a good agreement between HUGG-01 and JPL-V04.


Neurology ◽  
2021 ◽  
Vol 98 (1 Supplement 1) ◽  
pp. S13.2-S14
Author(s):  
Colin M. Huber ◽  
Declan A. Patton ◽  
Susan Margulies ◽  
Christina Master ◽  
Kristy Arbogast

ObjectiveTo quantify the head impact biomechanics, by impact mechanism, of female high school lacrosse players during games using an instrumented mouthguard.BackgroundThere is growing concern for the neurologic effects of repetitive head impacts in sports, which have been linked with several short-term neurophysiologic deficits. Girls' lacrosse represents a popular but understudied sport with regard to head impact exposure and current debate exists as to the need for enhanced protective equipment.Design/MethodsA female high school varsity lacrosse team wore the Stanford Instrumented Mouthguard during competitive games for the 2019 season. Video footage was reviewed to confirm head impact events and remove false-positive recordings. For each impact event, the mechanism was coded as stick contact, player contact, fall, or ball contact. Head impact rates were calculated per athlete exposure (AE, defined as a single player participating in a single game).ResultsSensor data were recorded for 15 female varsity lacrosse players for 14 games and 97 AEs. During games, 31 sensor-recorded head impacts were video-confirmed resulting in a pooled average head impact rate of 0.32 impacts/AE. The video-confirmed impacts were distributed between stick contact (17, 54.8%), player contact (12, 38.7%), and falls (2, 6.5%). There were no ball impacts. Overall peak kinematics were 34.0 ± 26.6 g, 12.0 ± 9.1 rad/s, and 3,666.5 ± 2,987.6 rad/s2. Stick contacts had the highest peak linear acceleration (42.7 ± 32.2 g), angular velocity (14.5 ± 11.1 rad/s), and angular acceleration (4,242.4 ± 3,634.9 rad/s2).ConclusionsStick impacts were the most common impact mechanism and resulted in the highest peak linear and angular kinematics, which may help explain why they are the most common cause of head injury in female lacrosse. By quantifying the head impact exposure, kinematics and mechanisms in female high school lacrosse, targeted injury preventions can be developed, such as rule changes and protective equipment.


2021 ◽  
Vol 13 (3) ◽  
pp. 37-44
Author(s):  
Dumitru Deleanu ◽  
◽  
Constantin Louis Dumitrache ◽  

Parametric roll on ships is an auto-parametric resonance phenomenon whose onset causes a sudden rise in roll oscillations leading to dangerous situations for the ship, the cargo and the crew. In the paper, we have numerically investigated the effect of modifying the heading angle on the roll amplitudes. We followed three strategies. In the first, we allowed the heading angle to decrease with a constant angular acceleration so that the encounter frequency has left the dangerous region of the resonance. However, this option involves changing the course of the ship in the long run, which is of course a shortcoming. In the second strategy, we changed the heading angle up and down around an average value that generates large roll amplitudes, by using different periodic sinusoidal or triangular profiles. The beneficial effect of this action is to keep the course, even if at the cost of a momentary delay. We noticed that both control techniques listed above generally managed to significantly reduce the roll amplitudes if certain thresholds have been exceeded. As a last idea for decreasing the parametric roll amplitudes, we used the combined effect of ship forward speed and heading angle change.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chaochun Che

This paper uses the XSENS sensor inertial motion capture device to collect the experimental data of the human body’s typical motion and posture-upper limb movement, based on the angular acceleration kinematics parameters of the human body’s upper limbs and upper limbs. We study the characteristics of human kinematics, statics, and dynamics and construct the upper limb movement model of the human body. Secondly, based on the principle of human anatomy, the human body is divided into 23 segments, with 18 upper limbs and 36 degrees of freedom; some anatomical terms are defined, and a unified coordinate system for the upper limb model of the human body is planned and established. In the process of experimental simulation, on the basis of analyzing and summarizing the laws and characteristics of the upper limb angles of the hip upper limbs, knee upper limbs, and ankle upper limbs during walking, a general function of the upper limb angles of the three upper limbs changing with time during walking was established. On the basis of analyzing 40 sets of upper limb movement data, with the three parameters of height, weight, and upper limb movement cycle as independent variables, the general function coefficient solving equation is given through function fitting. Finally, the production of interactive animation of upper limb movement is taken as an example. Based on the acceleration sensor and three-axis gyroscope, the limbs during the movement of the upper limb motion data are collected, preprocessed, and transmitted, and then, coordinate correction and data filtering are used to output quaternary parameters to give Maya an animated character model. The animation interactive demonstration is carried out in the way of web 3D, and the XSENS sensor is explored in the animation capture.


Author(s):  
Tianyun Jiang ◽  
Shan Tian ◽  
Tianhong Chen ◽  
Xingyu Fan ◽  
Jie Yao ◽  
...  

Half-squat parachuting landing is a kind of activity with high impact force. Injuries on lower-extremity joints are common in half-squat parachuting landing and would be increased with a backpack. An ankle brace was used to prevent ankle injuries in landing. However, few quantitative studies reported about the protection of an ankle brace for lower-extremity joints in half-squat parachuting landing with a backpack. This study focused on evaluating the protective effects of an ankle brace in half-squat parachuting landing with a backpack. Seven male participants landed from 120 cm with a backpack and an ankle brace. Each participant performed three landing trials on every experimental condition. Kinetics and kinematics of the hip, knee, and ankle were analyzed. It was found that the ankle brace did not significantly affect the ground reaction force with backpack but increased the ground reaction force from 14.7 ± 2.0 bodyweight to 16.2 ± 1.9 bodyweight (p = 0.017) without the backpack. The ankle brace significantly (p &lt; 0.05) decreased the angular displacement, angular velocity, and angular acceleration of the ankle both without and with the backpack. In conclusion, the ankle brace could restrict ankle motion and significantly increase ground reaction force without the backpack. However, the ankle brace did not significantly influence ground reaction force and still restricted ankle motion with the backpack. Therefore, the ankle brace was more effective in half-squat parachuting landing with the backpack than no-backpack landing.


Sign in / Sign up

Export Citation Format

Share Document