Temporal interactions in direction-selective complex cells of area 18 and the posteromedial lateral suprasylvian cortex (PMLS) of the cat

2006 ◽  
Vol 23 (2) ◽  
pp. 233-246 ◽  
Author(s):  
ILDIKÓ VAJDA ◽  
BART G. BORGHUIS ◽  
WIM A. VAN DE GRIND ◽  
MARTIN J.M. LANKHEET

Temporal interactions in direction-sensitive complex cells in area 18 and the posteromedial lateral suprasylvian cortex (PMLS) were studied using a reverse correlation method. Reverse correlograms to combinations of two temporally separated motion directions were examined and compared in the two areas. A comparison to the first-order reverse correlograms allowed us to identify nonlinear suppression or facilitation due to pairwise combinations of motion directions. Results for area 18 and PMLS were very different. Area 18 showed a single type of nonlinear behavior: similar directions facilitated and opposite directions suppressed spike probability. This effect was most pronounced for motion steps that followed each other immediately and decreased with increasing delay between steps. In PMLS, the picture was much more diverse. Some cells exhibited nonlinear interactions, that were opposite to those in area 18 (facilitation for opposite directions and suppression for similar ones), while the majority did not show a systematic interaction profile. We conclude that nonlinear second-order reverse correlation characteristics reveal different functional properties, despite similarities in the first-order reverse correlation profiles. Directional interactions in time revealed optimal integration of similar directions in area 18, but motion opponency—at least in some cells—in PMLS.

2004 ◽  
Author(s):  
Yasuaki Tsurumi ◽  
Hidekazu Nishigaki ◽  
Toshiaki Nakagawa ◽  
Tatsuyuki Amago ◽  
Katsuya Furusu ◽  
...  

2009 ◽  
Vol 101 (3) ◽  
pp. 1463-1479 ◽  
Author(s):  
Rui Kimura ◽  
Izumi Ohzawa

Responses of a visual neuron to optimally oriented stimuli can be suppressed by a superposition of another grating with a different orientation. This effect is known as cross-orientation suppression. However, it is still not clear whether the effect is intracortical in origin or a reflection of subcortical processes. To address this issue, we measured spatiotemporal responses to a plaid pattern, a superposition of two gratings, as well as to individual component gratings (optimal and mask) using a subspace reverse-correlation method. Suppression for the plaid was evaluated by comparing the response to that for the optimal grating. For component stimuli, excitatory and negative responses were defined as responses more positive and negative, respectively, than that to a blank stimulus. The suppressive effect for plaids was observed in the vast majority of neurons. However, only ∼30% of neurons showed the negative response to mask-only gratings. The magnitudes of negative responses to mask-only stimuli were correlated with the degree of suppression for plaid stimuli. Comparing the latencies, we found that the suppression for the plaids starts at about the same time or slightly later than the response onset for the optimal grating and reaches its maximum at about the same time as the peak latency for the mask-only grating. Based on these results, we propose that in addition to the suppressive effect originating at the subcortical stage, delayed suppressive signals derived from the intracortical networks act on the neuron to generate cross-orientation suppression.


2005 ◽  
Vol 45 (13) ◽  
pp. 1769-1779 ◽  
Author(s):  
Ildikó Vajda ◽  
Martin J.M. Lankheet ◽  
Wim A. van de Grind

1993 ◽  
Vol 10 (1) ◽  
pp. 131-158 ◽  
Author(s):  
Helen Sherk ◽  
Kathleen A. Mulligan

AbstractLateral suprasylvian visual cortex in the cat has been studied extensively, but its retinotopic organization remains controversial. Although some investigators have divided this region into many distinct areas, others have argued for a simpler organization. A clear understanding of the region’s retinotopic organization is important in order to define distinct areas that are likely to subserve unique visual functions. We therefore reexamined the map of the lower visual field in the striate-recipient region of lateral suprasylvian cortex, a region we refer to as the lateral suprasylvian area, LS.A dual mapping approach was used. First, receptive fields were plotted at numerous locations along closely spaced electrode penetrations; second, different anterograde tracers were injected at retinotopically identified sites in area 17, yielding patches of label in LS. To visualize the resulting data, suprasylvian cortex was flattened with the aid of a computer.Global features of the map reported in many earlier studies were confirmed. Central visual field was represented posteriorly, and elevations generally shifted downward as one moved anteriorly. Often (though not always) there was a progression from peripheral locations towards the vertical meridian as the electrode moved down the medial suprasylvian bank.The map had some remarkable characteristics not previously reported in any map in the cat. The vertical meridian’s representation was split into two pieces, separated by a gap, and both pieces were partially internalized within the map. Horizontal meridian occupied the gap. The area centralis usually had a dual representation along the posterior boundary of the lower field representation, and other fragments of visual field were duplicated as well. Finally, magnification appeared to change abruptly and unexpectedly, so that compressed regions of representation adjoined expanded regions. Despite its complexity, we found the map to be more orderly than previously thought. There was no clearcut retinotopic basis on which to subdivide LS’s lower field representation into distinct areas.


1985 ◽  
Vol 53 (2) ◽  
pp. 544-556 ◽  
Author(s):  
D. M. Berson

Retinal Y-cells activate most cells in the deep layers of the cat's superior colliculus via an indirect pathway involving the occipital cortex. The lateral suprasylvian area seems to be an important source of visual input to the deep collicular strata but it is unclear whether Y-cell influences reach this extrastriate area and, hence, whether this area participates in the indirect Y-cell pathway. In this study, retinal influences on the posteromedial lateral suprasylvian area (PMLS) were studied in anesthetized cats. Responses to electrical stimulation of the optic disk (OD) and optic chiasm (OX) were recorded in single units in PMLS and in neurons of the dorsal lateral geniculate nucleus (LGNd) that were antidromically driven from PMLS. Virtually all PMLS cells (99%; 99/100) exhibited small differences (less than or equal to 0.8 ms) between OD- and OX-activation latency, indicating that they were driven by a pathway originating in rapidly conducting Y-cell axons. A small number of PMLS cells (17%; 20/118) had very short activation latencies (less than or equal to 3.2 ms from OX), comparable to those of cells in areas 17 and 18 receiving monosynaptic inputs from geniculate Y-cells. Further, LGNd cells with latency behaviors typical of Y-cells could be antidromically driven from PMLS, confirming that geniculate Y-cells project directly to PMLS. Most PMLS cells (83%; 98/118), though exhibiting small OD-OX latency differences, had absolute latencies too long to be attributed to direct inputs from geniculate Y-cells (3.3-8.5 ms from OX). Thus Y-cells in the LGNd influence most PMLS cells by way of a multisynaptic pathway. PMLS cells antidromically activated from the superior colliculus were driven only by this multisynaptic Y-cell input. Total conduction time from the retina through PMLS to the colliculus corresponds closely to the latency of the indirect Y-cell activation observed in the deep collicular layers. These results support the view that the lateral suprasylvian cortex constitutes an important source of visual input to the cat's deep collicular layers and, more generally, that the extrastriate visual cortex may figure prominently in the cortical control of gaze.


2017 ◽  
Vol 95 (8) ◽  
pp. 720-724 ◽  
Author(s):  
Kai Kai Li ◽  
Lin Zhuo ◽  
Chun Mei Zhang ◽  
Chao Chen ◽  
Bing Cong Gou

Nonrelativistic energies and wave functions of the 1s22s2p 3Po states of Be isoelectronic sequence (Z = 11–18) are calculated using the full core plus correlation method (FCPC). To obtain the accurate energy level, the relativistic corrections and mass polarization effect are included by using the first-order perturbation theory. The calculated excitation energies (relative to the 1s22s2 ground state) are compared with the experiment. Most of the calculated [Formula: see text] energies agree with the experiment to within a few inverse centimetres. The calculated hyperfine coupling constants are in good agreement with the latest theoretical data in the literature. Our results may provide valuable reference data for spectral analysis and identification in the future.


1998 ◽  
Vol 15 (1) ◽  
pp. 15-25 ◽  
Author(s):  
CHOONGKIL LEE ◽  
THEODORE G. WEYAND ◽  
JOSEPH G. MALPELI

In this study, we examined functional contributions of major subdivisions of the lateral geniculate nucleus to the cat's lateral suprasylvian visual area (LS) in relation to the patchy horizontal distributions of association inputs. Multiple-unit activity driven via the contralateral eye was assessed during reversible blockade of the retinotopically corresponding part of layer A, the C layers as a group, or the medial interlaminar nucleus (MIN). Inactivating each of these targets reduced activity at some cortical sites, with inactivation of layer A having, on average, the largest effect. Activity was rarely abolished by inactivation of a single target, indicating that most LS sites receive multiple inputs. Dependence on layer A was strongly correlated with the horizontal distribution of association inputs from area 18. Closely spaced injections of anatomical tracers into extensive regions of area 18 resulted in patches of terminal label in lateral suprasylvian cortex. Activity inside the patches was relatively dependent on layer A, whereas that outside the patches was not. Dependence on the MIN and layer A were negatively correlated, suggesting that inputs dominated by the MIN and layer A were concentrated in independent sets of patches. These results indicate that the anatomically observed patchy projections reflect the functional consequences of geniculate lamination. The A layers are high-acuity relays, whereas the MIN is probably a specialization for dim-light vision (Lee et al., 1984; Lee et al., 1992). We propose that the partial overlap of inputs dominated by the A layers and the MIN allows dynamic shifts in their relative contributions to LS responses, optimizing the balance of high-acuity and high-sensitivity channels over a wide range of illumination conditions.


Neuroscience ◽  
1998 ◽  
Vol 84 (3) ◽  
pp. 685-698 ◽  
Author(s):  
A Chabli ◽  
D.Y Ruan ◽  
S Molotchnikoff

Sign in / Sign up

Export Citation Format

Share Document