scholarly journals Sensitivity to visual motion in amblyopic macaque monkeys

2006 ◽  
Vol 23 (2) ◽  
pp. 247-256 ◽  
Author(s):  
LYNNE KIORPES ◽  
CHAO TANG ◽  
J. ANTHONY MOVSHON

Amblyopia is usually considered to be a deficit in spatial vision. But there is evidence that amblyopes may also suffer specific deficits in motion sensitivity as opposed to losses that can be explained by the known deficits in spatial vision. We measured sensitivity to visual motion in random dot displays for strabismic and anisometropic amblyopic monkeys. We used a wide range of spatial and temporal offsets and compared the performance of the fellow and amblyopic eye for each monkey. The amblyopes were severely impaired at detecting motion at fine spatial and long temporal offsets, corresponding to fine spatial scale and slow speeds. This impairment was also evident for the untreated fellow eyes of strabismic but not anisometropic amblyopes. Motion sensitivity functions for amblyopic eyes were shifted toward large spatial scales for amblyopic compared to fellow eyes, to a degree that was correlated with the shift in scale of the spatial contrast sensitivity function. Amblyopic losses in motion sensitivity, however, were not correlated with losses in spatial contrast sensitivity. This, combined with the specific impairment for detecting long temporal offsets, reveals a deficit in spatiotemporal integration in amblyopia which cannot be explained by the lower spatial resolution of amblyopic vision.

2004 ◽  
Vol 21 (6) ◽  
pp. 851-859 ◽  
Author(s):  
LYNNE KIORPES ◽  
J. ANTHONY MOVSHON

The development of spatial vision is relatively well documented in human and nonhuman primates. However, little is known about the development of sensitivity to motion. We measured the development of sensitivity to direction of motion, and the relationship between motion and contrast sensitivity in macaque monkeys as a function of age. Monkeys (Macaca nemestrina, aged between 10 days and 3 years) discriminated direction of motion in random-dot kinematograms. The youngest monkeys showed directionally selective orienting and the ability to integrate motion signals at large dot displacements and fast speeds. With age, coherence sensitivity improved for all spatial and temporal dot displacements tested. The temporal interval between the dots was far less important than the spatial offset in determining the animals' performance at all but the youngest ages. Motion sensitivity improved well beyond the end of the first postnatal year, when mid-spatial-frequency contrast sensitivity reached asymptote, and continued for at least 3 years. Sensitivity to contrast at high spatial frequencies also continued to develop beyond the end of the first year. We conclude that the development of motion sensitivity depends on mechanisms beyond the low-level filters presumed to limit acuity and contrast sensitivity, and most likely reflects the function of extrastriate visual areas.


2020 ◽  
Author(s):  
Scott William Joseph Mooney ◽  
Nazia Alam ◽  
N. Jeremy Hill ◽  
Glen T. Prusky

The contrast sensitivity function (CSF) is an informative measure of visual health, but the practical difficulty of measuring it has impeded detailed analyses of its relationship to different visual disorders. Furthermore, most existing tasks cannot be used in populations with cognitive impairment. We analyzed detailed CSFs measured with a non-verbal procedure called “Gradiate”, which efficiently infers visibility from eye movements and manipulates stimulus appearance in real time. Sixty observers of varying age (38 with refractive error) were presented with moving stimuli. Stimulus spatial frequency and contrast advanced along fifteen radial sweeps through CSF space in response to stimulus-congruent eye movements. A point on the CSF was recorded when tracking ceased. Gradiate CSFs were reliable and in high agreement with independent low contrast acuity thresholds. Overall CSF variation was largely captured by two orthogonal factors (“radius” and “slope”), or two orthogonal shape factors when size was normalized (“aspect ratio” and “curvature”). CSF radius was highly predictive of LogMAR acuity, as were aspect ratio and curvature together, but only radius was predictive of observer age. Our findings suggest that Gradiate holds promise for assessing spatial vision in both verbal and non-verbal populations and indicate that variation between detailed CSFs can reveal useful information about visual health.


2020 ◽  
Vol 2020 (28) ◽  
pp. 1-6
Author(s):  
Rafał K. Mantiuk ◽  
Minjung Kim ◽  
Maliha Ashraf ◽  
Qiang Xu ◽  
M. Ronnier Luo ◽  
...  

We model color contrast sensitivity for Gabor patches as a function of spatial frequency, luminance and chromacity of the background, modulation direction in the color space and stimulus size. To fit the model parameters, we combine the data from five independent datasets, which let us make predictions for background luminance levels between 0.0002 cd/m2 and 10 000 cd/m2, and for spatial frequencies between 0.06 cpd and 32 cpd. The data are well-explained by two models: a model that encodes cone contrast and a model that encodes postreceptoral, opponent-color contrast. Our intention is to create practical models, which can well explain the detection performance for natural viewing in a wide range of conditions. As our models are fitted to the data spanning very large range of luminance, they can find applications in modeling visual performance for high dynamic range and augmented reality displays.


Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 214-214 ◽  
Author(s):  
S A Koskin ◽  
V F Danilichev ◽  
Y E Shelepin

We studied the contrast sensitivity functions (CSFs) in patients with different eye and brain diseases using a computerised sinusoidal grating test with a wide range of frequencies (0.4 – 19.0 cycles deg−1), the Pelli - Robson chart and a new chart with frequency-filtered Snellen optotypes. The patients had different CSF curves with a decrease of contrast sensitivity in the low, middle, or high frequencies depending on their main disease (refraction anomalies, cataract, glaucoma, neuritis of optic nerve, brain tumours, etc). Analysis showed that optotypes in the Pelli - Robson chart have a wide-range spatial-frequency spectrum, and optotype recognition is determined not only by low spatial frequencies. We find that the recognition of standard Sloan's optotypes is determined mostly by sensitivity in the range of 9.4 – 14.0 cycles deg−1. At the same time we measured contrast sensitivity using the new filtered Snellen optotypes. Our calculations support our earlier suggestions that the new filtered optotypes have a narrow-band spatial-frequency spectrum, thus enabling selective measurement of contrast sensitivity in each narrow frequency band.


1999 ◽  
Vol 39 (14) ◽  
pp. 2387-2398 ◽  
Author(s):  
Jyrki M. Rovamo ◽  
Mia I. Kankaanpää ◽  
Heljä Kukkonen

2019 ◽  
Vol 8 (6) ◽  
pp. 16 ◽  
Author(s):  
Haiyan Zheng ◽  
Menglu Shen ◽  
Xianghang He ◽  
Rong Cui ◽  
Luis Andres Lesmes ◽  
...  

2003 ◽  
Vol 20 (5) ◽  
pp. 577-588 ◽  
Author(s):  
PETRA KOZMA ◽  
LYNNE KIORPES

Amblyopia is characterized by losses in a variety of aspects of spatial vision, such as acuity and contrast sensitivity. Our goal was to learn whether those basic spatial deficits lead to impaired global perceptual processing in strabismic and anisometropic amblyopia. This question is unresolved by the current human psychophysical literature. We studied contour integration and contrast sensitivity in amblyopic monkeys. We found deficient contour integration in anisometropic as well as strabismic amblyopic monkeys. Some animals showed poor contour integration in the fellow eye as well as in the amblyopic eye. Orientation jitter of the elements in the contour systematically decreased contour-detection ability for control and fellow eyes, but had less effect on amblyopic eyes. The deficits were not clearly related to basic losses in contrast sensitivity and acuity for either type of amblyopia. We conclude that abnormal contour integration in amblyopes reflects disruption of mechanisms that are different from those that determine acuity and contrast sensitivity, and are likely to be central to V1.


2020 ◽  
Author(s):  
Andrew Haun

In this paper I use a detailed model of human spatial vision to estimate the visibility of some perceptual properties across the visual field, including aspects of colorfulness, sharpness, and blurriness. The model is constructed to reproduce several patterns of human contrast sensitivity, functions of contrast, scale and retinal eccentricity. I apply the model to colorful, complex natural scenes, and estimate the degree to which color and edge information are present in the model’s representation of the scenes. I find that, aside from the intrinsic drift in the spatial scale of the representation, there are not large qualitative differences between foveal and peripheral representations of ‘colorfulness’ and ‘sharpness’.


1981 ◽  
Vol 2 (3) ◽  
pp. 291-299 ◽  
Author(s):  
Daniel J. Uhlrich ◽  
Edward A. Essock ◽  
Stephen Lehmkuhle

Sign in / Sign up

Export Citation Format

Share Document