The number, morphology, and distribution of retinal ganglion cells and optic axons in the Australian lungfishNeoceratodus forsteri(Krefft 1870)

2006 ◽  
Vol 23 (2) ◽  
pp. 257-273 ◽  
Author(s):  
HELENA J. BAILES ◽  
ANN E.O. TREZISE ◽  
SHAUN P. COLLIN

Australian lungfishNeoceratodus forsterimay be the closest living relative to the first tetrapods and yet little is known about their retinal ganglion cells. This study reveals that lungfish possess a heterogeneous population of ganglion cells distributed in a horizontal streak across the retinal meridian, which is formed early in development and maintained through to adult stages. The number and complement of both ganglion cells and a population of putative amacrine cells within the ganglion cell layer are examined using retrograde labelling from the optic nerve and transmission electron-microscopic analysis of axons within the optic nerve. At least four types of retinal ganglion cells are present and lie predominantly within a thin ganglion cell layer, although two subpopulations are identified, one within the inner plexiform and the other within the inner nuclear layer. A subpopulation of retinal ganglion cells comprising up to 7% of the total population are significantly larger (>400 μm2) and are characterized as giant or alpha-like cells. Up to 44% of cells within the retinal ganglion cell layer represent a population of presumed amacrine cells. The optic nerve is heavily fasciculated and the proportion of myelinated axons increases with body length from 17% in subadults to 74% in adults. Spatial resolving power, based on ganglion cell spacing, is low (1.6–1.9 cycles deg−1,n= 2) and does not significantly increase with growth. This represents the first detailed study of retinal ganglion cells in sarcopterygian fish, and reveals that, despite variation amongst animal groups, trends in ganglion cell density distribution and characteristics of cell types were defined early in vertebrate evolution.


2008 ◽  
Vol 25 (1) ◽  
pp. 95-102 ◽  
Author(s):  
HANAKO OI ◽  
GLORIA J. PARTIDA ◽  
SHERWIN C. LEE ◽  
ANDREW T. ISHIDA

Antisera directed against hyperpolarization-activated, cyclic nucleotide–sensitive (HCN) channels bind to somata in the ganglion cell layer of rat and rabbit retinas, and mRNA for different HCN channel isoforms has been detected in the ganglion cell layer of mouse retina. However, previous studies neither provided evidence that any of the somata are ganglion cells (as opposed to displaced amacrine cells) nor quantified these cells. We therefore tested whether isoform-specific anti-HCN channel antisera bind to ganglion cells labeled by retrograde transport of fluorophore-coupled dextran. In flat-mounted adult rat retinas, the number of dextran-backfilled ganglion cells agreed with cell densities reported in previous studies, and anti-HCN4 antisera bound to the somata of approximately 40% of these cells. The diameter of these somata ranged from 7 to 30 μm. Consistent with localization to cell membranes, the immunoreactivity formed a thin line that circumscribed individual somata. Optic fiber layer axon fascicles, and the proximal dendrites of some ganglion cells, also displayed binding of anti-HCN4 antisera. These results suggest that the response of some mammalian retinal ganglion cells to hyperpolarization may be modulated by changes in intracellular cAMP levels, and could thus be more complex than expected from previous voltage and current recordings.



1992 ◽  
Vol 9 (3-4) ◽  
pp. 389-398 ◽  
Author(s):  
Luiz R. G. Britto ◽  
Dȃnia E. Hamassaki-Britto

AbstractA small number of enkephalin-like immunoreactive cells were observed in the ganglion cell layer of the pigeon retina. Many of these neurons were identified as ganglion cells, since they were retrogradely labeled after injections of fluorescent latex microspheres in the contralateral optic tectum. These ganglion cells were mainly distributed in the inferior retina, and their soma sizes ranged from 12–26 μm in the largest axis. The enkephalin-containing ganglion cells appear to represent only a very small percentage of the ganglion cells projecting to the optic tectum (less than 0.1%). Two to 7 weeks after removal of the neural retina, there was an almost complete elimination of an enkephalin-like immunoreactive plexus in layer 3 of the contralateral, rostrodorsal optic tectum. These data provide evidence for the existence of a population of enkephalinergic retinal ganglion cells with projections to the optic tectum.



1992 ◽  
Vol 9 (3-4) ◽  
pp. 217-223 ◽  
Author(s):  
Anton Reiner

AbstractPrevious biochemical and immunohistochemical studies have shown that the neurotensin-related hexapeptide LANT6 is widespread and abundant in the avian nervous system. In the present study, immunohistochemical techniques were used to show that LANT6 is present in numerous cells of the retinal ganglion cell layer in pigeons. Consistent with the possibility that these LANT6+ retinal cells might be retinal ganglion cells, it was found that (1) the distribution of LANT6+ fibers and terminals in the central retinal target areas matched the distribution of central retinal projections; (2) the LANT6+ fibers and terminals are eliminated from retinal target areas by transection of the contralateral optic nerve; and (3) LANT6+ retinal cells in the ganglion cell layer can be retrogradely labeled by injections of fluorogold in the tectum. These results suggest that LANT6 may be utilized as a neuroactive substance by the central terminals of numerous retinal ganglion cells in birds. Similar anatomical findings have been previously reported for members of several other vertebrate groups, giving rise to the possibility that LANT6 (or its homologues in nonavians) may be a phylogenetically ubiquitous neuroactive substance used by retinal ganglion cells.



2018 ◽  
Author(s):  
Timothy Esler ◽  
Robert R. Kerr ◽  
Bahman Tahayori ◽  
David B. Grayden ◽  
Hamish Meffin ◽  
...  

ABSTRACTObjective. Currently, a challenge in electrical stimulation of the retina is to excite only the cells lying directly under the electrode in the ganglion cell layer, while avoiding excitation of the axons that pass over the surface of the retina in the nerve fiber layer. Since these passing fibers may originate from distant regions of the ganglion cell layer. Stimulation of both target retinal ganglion cells and overlying axons results in irregular visual percepts, significantly limiting perceptual efficacy. This research explores how differences in fiber orientation between the nerve fiber layer and ganglion cell layer leads to differences in the activation of the axon initial segment and axons of passage. Approach. Axons of passage of retinal ganglion cells in the nerve fiber layer are characterized by a narrow distribution of fiber orientations, causing highly anisotropic spread of applied current. In contrast, proximal axons in the ganglion cell layer have a wider distribution of orientations. A four-layer computational model of epiretinal extracellular stimulation that captures the effect of neurite orientation in anisotropic tissue has been developed using a modified version of the standard volume conductor model, known as the cellular composite model. Simulations are conducted to investigate the interaction of neural tissue orientation, stimulating electrode configuration, and stimulation pulse duration and amplitude. Main results. The dependence of fiber activation on the anisotropic nature of the nerve fiber layer is first established. Via a comprehensive search of key parameters, our model shows that the simultaneous stimulation with multiple electrodes aligned with the nerve fiber layer can be used to achieve selective activation of axon initial segments rather than passing fibers. This result can be achieved with only a slight increase in total stimulus current and modest increases in the spread of activation in the ganglion cell layer, and is shown to extend to the general case of arbitrary electrode array positioning and arbitrary target neural volume. Significance. These results elucidate a strategy for more targeted stimulation of retinal ganglion cells with experimentally-relevant multi-electrode geometries and readily achievable stimulation requirements.



Perception ◽  
1974 ◽  
Vol 3 (3) ◽  
pp. 257-260 ◽  
Author(s):  
A Cowey

The retinal ganglion cells were counted in a rhesus monkey from which the striate cortex had been removed 8 years earlier, and the results compared with those obtained previously with the eyes of normal monkeys. About 80% of the ganglion cells within 10 degrees of the fovea were missing. Peripherally their density was unaffected. The ganglion cell layer of the entire retina resembled the peripheral retina of a normal monkey, and this result helps to explain the remarkable nature of the animal's vision.



2015 ◽  
Vol 56 (10) ◽  
pp. 6095 ◽  
Author(s):  
Francisco M. Nadal-Nicolás ◽  
Paloma Sobrado-Calvo ◽  
Manuel Jiménez-López ◽  
Manuel Vidal-Sanz ◽  
Marta Agudo-Barriuso




1994 ◽  
Vol 72 (4) ◽  
pp. 721-730 ◽  
Author(s):  
Shaun P. Collin ◽  
M. Ather Ali

The topography of Nissl-stained cells within the retinal ganglion cell layer is examined in two closely related freshwater teleosts from the family Cyprinidae. Regardless of the close phylogenetic relationship and the sympatric habitats of the two species, pronounced differences in the number and position of areas of increased cell density are observed in their retinae. in the creek chub, Semotilus atromaculatus, a midwater crepuscular feeder, three retinal specializations or areae centrales are identified in the dorsonasal, nasal, and temporal regions of the retina. In the cutlips minnow, Exoglossum maxillingua, a benthic diurnal feeder, two areae centrales are identified in temporal and nasal retina. The upper limits of the spatial resolving power of each species are calculated from the spacing of cells within the ganglion cell layer. Differences in the arrangement of isodensity contours appear to reflect the symmetry of each species' visual environment. The development and significance of up to three visually acute zones are discussed.



2018 ◽  
Vol 59 (1) ◽  
pp. 370 ◽  
Author(s):  
Satoru Ueno ◽  
Azusa Yoneshige ◽  
Yoshiki Koriyama ◽  
Man Hagiyama ◽  
Yoshikazu Shimomura ◽  
...  


In the model of experimentally induced ischemia- reperfusion injury, retinal ganglion cells (RGC) expressing the gene AP-1 result apoptosis. The inflammation mediators, such as TNF-α, IL-1β, etc. lead RGC to apoptosis, that may lead the thinning of the retinal ganglion cell layer (RGCL) followed by the optic nerve fiber layer (RNFL) thinning. In his study we observed retinal ganglion cell and optic nerve fiber layer thinning in patients with various uveitis, that the pathological features appear obliterative vasculitis, using the optical coherence tomography (OCT) imaging analyses. Subjects were 182 eyes of 91 uveitis patients without glaucoma. Comparison were patients with normal tension glaucoma (NTG). Image analyses were conducted with 3D OCT-2000. As a result average RGCL thickness values in the patients with uveitis were significantly(p<0.01) thinner than those in healthies. Cycle scan findings of RNFL around the optic disc in the patients with uveitis showed significant thinning especially at nasal side. The retinal ganglion cell layer thinning followed by the retinal nerve fiber thinning in the patients with various uveitis was observed, and the thinning was similar to that in patients with glaucoma. The observation of RGCL and RNFL thickness may be useful for the diagnosis and the follow-up of uveitis.



Sign in / Sign up

Export Citation Format

Share Document