Atrophy of Retinal Ganglion Cells after Removal of Striate Cortex in a Rhesus Monkey

Perception ◽  
1974 ◽  
Vol 3 (3) ◽  
pp. 257-260 ◽  
Author(s):  
A Cowey

The retinal ganglion cells were counted in a rhesus monkey from which the striate cortex had been removed 8 years earlier, and the results compared with those obtained previously with the eyes of normal monkeys. About 80% of the ganglion cells within 10 degrees of the fovea were missing. Peripherally their density was unaffected. The ganglion cell layer of the entire retina resembled the peripheral retina of a normal monkey, and this result helps to explain the remarkable nature of the animal's vision.

1992 ◽  
Vol 9 (3-4) ◽  
pp. 389-398 ◽  
Author(s):  
Luiz R. G. Britto ◽  
Dȃnia E. Hamassaki-Britto

AbstractA small number of enkephalin-like immunoreactive cells were observed in the ganglion cell layer of the pigeon retina. Many of these neurons were identified as ganglion cells, since they were retrogradely labeled after injections of fluorescent latex microspheres in the contralateral optic tectum. These ganglion cells were mainly distributed in the inferior retina, and their soma sizes ranged from 12–26 μm in the largest axis. The enkephalin-containing ganglion cells appear to represent only a very small percentage of the ganglion cells projecting to the optic tectum (less than 0.1%). Two to 7 weeks after removal of the neural retina, there was an almost complete elimination of an enkephalin-like immunoreactive plexus in layer 3 of the contralateral, rostrodorsal optic tectum. These data provide evidence for the existence of a population of enkephalinergic retinal ganglion cells with projections to the optic tectum.


2006 ◽  
Vol 23 (2) ◽  
pp. 257-273 ◽  
Author(s):  
HELENA J. BAILES ◽  
ANN E.O. TREZISE ◽  
SHAUN P. COLLIN

Australian lungfishNeoceratodus forsterimay be the closest living relative to the first tetrapods and yet little is known about their retinal ganglion cells. This study reveals that lungfish possess a heterogeneous population of ganglion cells distributed in a horizontal streak across the retinal meridian, which is formed early in development and maintained through to adult stages. The number and complement of both ganglion cells and a population of putative amacrine cells within the ganglion cell layer are examined using retrograde labelling from the optic nerve and transmission electron-microscopic analysis of axons within the optic nerve. At least four types of retinal ganglion cells are present and lie predominantly within a thin ganglion cell layer, although two subpopulations are identified, one within the inner plexiform and the other within the inner nuclear layer. A subpopulation of retinal ganglion cells comprising up to 7% of the total population are significantly larger (>400 μm2) and are characterized as giant or alpha-like cells. Up to 44% of cells within the retinal ganglion cell layer represent a population of presumed amacrine cells. The optic nerve is heavily fasciculated and the proportion of myelinated axons increases with body length from 17% in subadults to 74% in adults. Spatial resolving power, based on ganglion cell spacing, is low (1.6–1.9 cycles deg−1,n= 2) and does not significantly increase with growth. This represents the first detailed study of retinal ganglion cells in sarcopterygian fish, and reveals that, despite variation amongst animal groups, trends in ganglion cell density distribution and characteristics of cell types were defined early in vertebrate evolution.


1992 ◽  
Vol 9 (3-4) ◽  
pp. 217-223 ◽  
Author(s):  
Anton Reiner

AbstractPrevious biochemical and immunohistochemical studies have shown that the neurotensin-related hexapeptide LANT6 is widespread and abundant in the avian nervous system. In the present study, immunohistochemical techniques were used to show that LANT6 is present in numerous cells of the retinal ganglion cell layer in pigeons. Consistent with the possibility that these LANT6+ retinal cells might be retinal ganglion cells, it was found that (1) the distribution of LANT6+ fibers and terminals in the central retinal target areas matched the distribution of central retinal projections; (2) the LANT6+ fibers and terminals are eliminated from retinal target areas by transection of the contralateral optic nerve; and (3) LANT6+ retinal cells in the ganglion cell layer can be retrogradely labeled by injections of fluorogold in the tectum. These results suggest that LANT6 may be utilized as a neuroactive substance by the central terminals of numerous retinal ganglion cells in birds. Similar anatomical findings have been previously reported for members of several other vertebrate groups, giving rise to the possibility that LANT6 (or its homologues in nonavians) may be a phylogenetically ubiquitous neuroactive substance used by retinal ganglion cells.


2018 ◽  
Author(s):  
Timothy Esler ◽  
Robert R. Kerr ◽  
Bahman Tahayori ◽  
David B. Grayden ◽  
Hamish Meffin ◽  
...  

ABSTRACTObjective. Currently, a challenge in electrical stimulation of the retina is to excite only the cells lying directly under the electrode in the ganglion cell layer, while avoiding excitation of the axons that pass over the surface of the retina in the nerve fiber layer. Since these passing fibers may originate from distant regions of the ganglion cell layer. Stimulation of both target retinal ganglion cells and overlying axons results in irregular visual percepts, significantly limiting perceptual efficacy. This research explores how differences in fiber orientation between the nerve fiber layer and ganglion cell layer leads to differences in the activation of the axon initial segment and axons of passage. Approach. Axons of passage of retinal ganglion cells in the nerve fiber layer are characterized by a narrow distribution of fiber orientations, causing highly anisotropic spread of applied current. In contrast, proximal axons in the ganglion cell layer have a wider distribution of orientations. A four-layer computational model of epiretinal extracellular stimulation that captures the effect of neurite orientation in anisotropic tissue has been developed using a modified version of the standard volume conductor model, known as the cellular composite model. Simulations are conducted to investigate the interaction of neural tissue orientation, stimulating electrode configuration, and stimulation pulse duration and amplitude. Main results. The dependence of fiber activation on the anisotropic nature of the nerve fiber layer is first established. Via a comprehensive search of key parameters, our model shows that the simultaneous stimulation with multiple electrodes aligned with the nerve fiber layer can be used to achieve selective activation of axon initial segments rather than passing fibers. This result can be achieved with only a slight increase in total stimulus current and modest increases in the spread of activation in the ganglion cell layer, and is shown to extend to the general case of arbitrary electrode array positioning and arbitrary target neural volume. Significance. These results elucidate a strategy for more targeted stimulation of retinal ganglion cells with experimentally-relevant multi-electrode geometries and readily achievable stimulation requirements.


2008 ◽  
Vol 25 (1) ◽  
pp. 95-102 ◽  
Author(s):  
HANAKO OI ◽  
GLORIA J. PARTIDA ◽  
SHERWIN C. LEE ◽  
ANDREW T. ISHIDA

Antisera directed against hyperpolarization-activated, cyclic nucleotide–sensitive (HCN) channels bind to somata in the ganglion cell layer of rat and rabbit retinas, and mRNA for different HCN channel isoforms has been detected in the ganglion cell layer of mouse retina. However, previous studies neither provided evidence that any of the somata are ganglion cells (as opposed to displaced amacrine cells) nor quantified these cells. We therefore tested whether isoform-specific anti-HCN channel antisera bind to ganglion cells labeled by retrograde transport of fluorophore-coupled dextran. In flat-mounted adult rat retinas, the number of dextran-backfilled ganglion cells agreed with cell densities reported in previous studies, and anti-HCN4 antisera bound to the somata of approximately 40% of these cells. The diameter of these somata ranged from 7 to 30 μm. Consistent with localization to cell membranes, the immunoreactivity formed a thin line that circumscribed individual somata. Optic fiber layer axon fascicles, and the proximal dendrites of some ganglion cells, also displayed binding of anti-HCN4 antisera. These results suggest that the response of some mammalian retinal ganglion cells to hyperpolarization may be modulated by changes in intracellular cAMP levels, and could thus be more complex than expected from previous voltage and current recordings.


Development ◽  
1999 ◽  
Vol 126 (24) ◽  
pp. 5713-5724 ◽  
Author(s):  
K.L. McCabe ◽  
E.C. Gunther ◽  
T.A. Reh

Neurons in both vertebrate and invertebrate eyes are organized in regular arrays. Although much is known about the mechanisms involved in the formation of the regular arrays of neurons found in invertebrate eyes, much less is known about the mechanisms of formation of neuronal mosaics in the vertebrate eye. The purpose of these studies was to determine the cellular mechanisms that pattern the first neurons in vertebrate retina, the retinal ganglion cells. We have found that the ganglion cells in the chick retina develop as a patterned array that spreads from the central to peripheral retina as a wave front of differentiation. The onset of ganglion cell differentiation keeps pace with overall retinal growth; however, there is no clear cell cycle synchronization at the front of differentiation of the first ganglion cells. The differentiation of ganglion cells is not dependent on signals from previously formed ganglion cells, since isolation of the peripheral retina by as much as 400 μm from the front of ganglion cell differentiation does not prevent new ganglion cells from developing. Consistent with previous studies, blocking FGF receptor activation with a specific inhibitor to the FGFRs retards the movement of the front of ganglion cell differentiation, while application of exogenous FGF1 causes the precocious development of ganglion cells in peripheral retina. Our observations, taken together with those of previous studies, support a role for FGFs and FGF receptor activation in the initial development of retinal ganglion cells from the undifferentiated neuroepithelium peripheral to the expanding wave front of differentiation.


2018 ◽  
Vol 1 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Takashi Kanamoto ◽  
Yasushi Kitaoka ◽  
Hiroaki Sakaue ◽  
Yusuke Murakami ◽  
Yasuhiro Ikeda ◽  
...  

Purpose: The purpose of this study is to investigate the role of free D-serine in the death of retinal cells caused by ocular hypertension.Methods: Adult Wistar rats were used as an experimental model of ocular hypertension. Immunohistochemistry was used to identify the retinal sites and expression patterns of D-serine and serine racemase in the rat retina. The concentrations of free D-serine and L-serine in the retina were measured by two-dimensional high-performance liquid chromatography. Retinal cell death was investigated by Immunohistochemistry.Results: D-serine was expressed on the retinal ganglion cell layer in the retinas of rats with ocular hypertension. A serine racemase was specifically expressed in the retinal ganglion cells. The ratio of free D-/L-serine in the retinas with ocular hypertension was higher than that in the retinas with normal tension. Annexing-V-positive cells were observed in the retinal ganglion cell layer in the retinas of the rats with ocular hypertension, and these cells were also co-localized with D-serine expression.Conclusions: We suspect that the up-regulation of serine racemase expression induced by ocular hypertensionleads to an increase in free D-serine converted from free L-serine in retinal ganglion cells and that retinal cell death is associated with D-serine expression.


2009 ◽  
Vol 1 ◽  
pp. OED.S3417 ◽  
Author(s):  
Kenneth S. Shindler

A number of studies have suggested that homocysteine may be a contributing factor to development of retinopathy in diabetic patients based on observed correlations between elevated homocysteine levels and the presence of retinopathy. The significance of such a correlation remains to be determined, and potential mechanisms by which homocysteine might induce retinopathy have not been well characterized. Ganapathy and colleagues 1 used mutant mice that have endogenously elevated homocysteine levels due to heterozygous deletion of the cystathionine-β-synthase gene to examine changes in retinal pathology following induction of diabetes. Their finding that elevated homocysteine levels hastens loss of cells in the retinal ganglion cell layer suggests that toxicity to ganglion cells may warrant further investigation as a potential mechanism of homocysteine enhanced susceptibility to diabetic retinopathy.


Development ◽  
2001 ◽  
Vol 128 (1) ◽  
pp. 117-124 ◽  
Author(s):  
M. Gonzalez-Hoyuela ◽  
J.A. Barbas ◽  
A. Rodriguez-Tebar

The development of the nervous system is dependent on a complex set of signals whose precise co-ordination ensures that the correct number of neurones are generated. This regulation is achieved through a variety of cues that influence both the generation and the maintenance of neurones during development. We show that in the chick embryo, stratified retinal ganglion cells (RGCs) are themselves responsible for providing the signals that control the number of RGCs that are generated, both by inhibiting the generation of new ganglion cells and by killing incoming migratory ganglion cells. Selective toxicological ablation of RGCs in the chick embryo resulted in the achronic generation of ganglion cells, which eventually led to the repopulation of the ganglion cell layer and a large decrease in the physiological cell death affecting postmitotic migratory neurones. Interestingly, the application of exogenous NGF reversed the effects of ganglion cell ablation on ganglion cell death. Because the only source of NGF in the retina is that produced by the stratified ganglion cells, we infer that these differentiated neurones regulate their own cell number by secreting NGF, a neurotrophin that has previously been shown to be responsible for the death of migrating ganglion cells.


Sign in / Sign up

Export Citation Format

Share Document