scholarly journals Synaptic connections of amacrine cells containing vesicular glutamate transporter 3 in baboon retinas

2015 ◽  
Vol 32 ◽  
Author(s):  
DAVID W. MARSHAK ◽  
ALICE Z. CHUANG ◽  
DREW M. DOLINO ◽  
ROY A. JACOBY ◽  
WEILEY S. LIU ◽  
...  

AbstractThe goals of these experiments were to describe the morphology and synaptic connections of amacrine cells in the baboon retina that contain immunoreactive vesicular glutamate transporter 3 (vGluT3). These amacrine cells had the morphology characteristic of knotty bistratified type 1 cells, and their dendrites formed two plexuses on either side of the center of the inner plexiform layer. The primary dendrites received large synapses from amacrine cells, and the higher-order dendrites were both pre- and postsynaptic to other amacrine cells. Based on light microscopic immunolabeling results, these include AII cells and starburst cells, but not the polyaxonal amacrine cells tracer-coupled to ON parasol ganglion cells. The vGluT3 cells received input from ON bipolar cells at ribbon synapses and made synapses onto OFF bipolar cells, including the diffuse DB3a type. Many synapses from vGluT3 cells onto retinal ganglion cells were observed in both plexuses. At synapses where vGluT3 cells were presynaptic, two types of postsynaptic densities were observed; there were relatively thin ones characteristic of inhibitory synapses and relatively thick ones characteristic of excitatory synapses. In the light microscopic experiments with Neurobiotin-injected ganglion cells, vGluT3 cells made contacts with midget and parasol ganglion cells, including both ON and OFF types. Puncta containing immunoreactive gephyrin, an inhibitory synapse marker, were found at appositions between vGluT3 cells and each of the four types of labeled ganglion cells. The vGluT3 cells did not have detectable levels of immunoreactive γ-aminobutyric acid (GABA) or immunoreactive glycine transporter 1. Thus, the vGluT3 cells would be expected to have ON responses to light and make synapses onto neurons in both the ON and the OFF pathways. Taken with previous results, these findings suggest that vGluT3 cells release glycine at some of their output synapses and glutamate at others.

1995 ◽  
Vol 12 (2) ◽  
pp. 345-358 ◽  
Author(s):  
J.H. Brandstätter ◽  
U. Greferath ◽  
T. Euler ◽  
H. Wässle

AbstractDirection-selective (DS) ganglion cells of the mammalian retina have their dendrites in the inner plexiform layer (IPL) confined to two narrow strata. The same strata are also occupied by the dendrites of cholinergic amacrine cells which are probably presynaptic to the DS ganglion cells. GABA is known to play a crucial role in creating DS responses. We examined the types of GABAA receptors expressed by the cholinergic amacrine cells and also those expressed by their presynaptic and postsynaptic neurons, by applying immunocytochemical markers to vertical sections of rat retinas. Double-labelling experiments with antibodies against choline acetyltransferase (ChAT) and specific antibodies against different GABAA receptor subunits were performed. Cholinergic amacrine cells seem to express an unusual combination of GABAA receptor subunits consisting of α2-, β1-, β2/3-, γ2-, and δ-subunits. Bipolar cells, which could provide synaptic input to the DS circuitry, were stained with antibodies against the glutamate transporter GLT-1. The axon terminals of these bipolar cells are narrowly stratified in close proximity to the dendritic plexus of displaced cholinergic amacrine cells. The retinal distribution of synaptoporin, a synaptic vesicle associated protein, was studied. Strong reduction of immunolabelling was observed in the two cholinergic strata. The anatomical findings are discussed in the context of models of the DS circuitry of the mammalian retina.


1996 ◽  
Vol 13 (6) ◽  
pp. 1099-1107 ◽  
Author(s):  
Péter Buzás ◽  
Sára Jeges ◽  
Robert Gábriel

AbstractThe main route of information flow through the vertebrate retina is from the photoreceptors towards the ganglion cells whose axons form the optic nerve. Bipolar cells of the frog have been so far reported to contact mostly amacrine cells and the majority of input to ganglion cells comes from the amacrines. In this study, ganglion cells of frogs from two species (Bufo marinus, Xenopus laevis) were filled retrogradely with horseradish peroxidase. After visualization of the tracer, light-microscopic cross sections showed massive labeling of the somata in the ganglion cell layer as well as their dendrites in the inner plexiform layer. In cross sections, bipolar output and ganglion cell input synapses were counted in the electron microscope. Each synapse was assigned to one of the five equal sublayers (SLs) of the inner plexiform layer. In both species, bipolar cells were most often seen to form their characteristic synaptic dyads with two amacrine cells. In some cases, however, the dyads were directed to one amacrine and one ganglion cell dendrite. This type of synapse was unevenly distributed within the inner plexiform layer with the highest occurrence in SL2 both in Bufo and Xenopus. In addition, SL4 contained also a high number of this type of synapse in Xenopus. In both species, we found no or few bipolar to ganglion cell synapses in the marginal sublayers (SLs 1 and 5). In Xenopus, 22% of the bipolar cell output synapses went onto ganglion cells, whereas in Bufo this was only 10%. We conclude that direct bipolar to ganglion cell information transfer exists also in frogs although its occurrence is not as obvious and regular as in mammals. The characteristic distribution of these synapses, however, suggests that specific type of the bipolar and ganglion cells participate in this process. These contacts may play a role in the formation of simple ganglion cell receptive fields.


1991 ◽  
Vol 7 (6) ◽  
pp. 611-618 ◽  
Author(s):  
Roberta G. Pourcho ◽  
Michael T. Owczarzak

AbstractImmunocytochemical techniques were used to localize strychnine-sensitive glycine receptors in cat retina. Light microscopy showed staining in processes ramifying throughout the inner plexiform layer and in cell bodies of both amacrine and ganglion cells. At the electron-microscopic level, receptor immunoreactivity was seen to be clustered at sites postsynaptic to amacrine cells. In contrast, bipolar cells were neither presynaptic nor postsynaptic elements at sites of glycine receptor staining. Double-label studies verified the presence of glycine immunoreactivity in amacrine terminals presynaptic to glycine receptors. These findings support a role for glycine as an inhibitory neurotransmitter in amacrine cells.


2018 ◽  
Author(s):  
Robert E. Marc ◽  
Crystal Sigulinsky ◽  
Rebecca L. Pfeiffer ◽  
Daniel Emrich ◽  
James R. Anderson ◽  
...  

AbstractAll superclasses of retinal neurons display some form of electrical coupling including the key neurons of the inner plexiform layer: bipolar cells (BCs), amacrine or axonal cells (ACs) and ganglion cells (GCs). However, coupling varies extensively by class. For example, mammalian rod bipolar cells form no gap junctions at all, while all cone bipolar cells form class-specific coupling arrays, many of them homocellular in-superclass arrays. Ganglion cells are unique in that classes with coupling predominantly form heterocellular cross-class arrays of ganglion cell::amacrine cell (GC::AC) coupling in the mammalian retina. Ganglion cells are the least frequent superclass in the inner plexiform layer and GC::AC gap junctions are sparsely arrayed amidst massive cohorts of AC::AC, bipolar cell BC::BC, and AC::BC gap junctions. Many of these gap junctions and most ganglion cell gap junctions are suboptical, complicating analysis of specific ganglion cells. High resolution 2 nm TEM analysis of rabbit retinal connectome RC1 allows quantitative GC::AC coupling maps of identified ganglion cells. Ganglion cells classes apparently avoid direct cross-class homocellular coupling altogether even though they have opportunities via direct membrane touches, while transient OFF alpha ganglion cells and transient ON directionally selective (DS) ganglion cells are strongly coupled to distinct amacrine / axonal cell cohorts.A key feature of coupled ganglion cells is intercellular metabolite flux. Most GC::AC coupling involves GABAergic cells (γ+ amacrine cells), which results in significant GABA flux into ganglion cells. Surveying GABA coupling signatures in the ganglion cell layer across species suggests that the majority of vertebrate retinas engage in GC::AC coupling.Multi-hop synaptic queries of the entire RC1 connectome clearly profiles the coupled amacrine and axonal cells. Photic drive polarities and source bipolar cell class selec-tivities are tightly matched across coupled cells. OFF alpha ganglion cells are coupled to OFF γ+ amacrine cells and transient ON DS ganglion cells are coupled to ON γ+ amacrine cells including a large interstitial axonal cell (IAC). Synaptic tabulations show close matches between the classes of bipolar cells sampled by the coupled amacrine and ganglion cells. Further, both ON and OFF coupling ganglion networks show a common theme: synaptic asymmetry whereby the coupled γ+ neurons are also presynaptic to ganglion cell dendrites from different classes of ganglion cells outside the coupled set. In effect, these heterocellular coupling patterns enable an excited ganglion cell to directly inhibit nearby ganglion cells of different classes. Similarly, coupled γ+ amacrine cells engaged in feedback networks can leverage the additional gain of bipolar cell synapses in shaping the signaling of a spectrum of downstream targets based on their own selective coupling with ganglion cells.


1994 ◽  
Vol 11 (6) ◽  
pp. 1193-1203 ◽  
Author(s):  
Chen-Yu Yang ◽  
Stephen Yazulla

AbstractThe presence of inhibitory bipolar cells in salamander retina was investigated by a comparative analysis of the distribution of glutamate- and GABA-immunoreactivities (GLU-IR; GABA-IR) using a postembedding immunocytochemical method. GLU-IR was found in virtually all photoreceptors, bipolar cells and ganglion cells, neuronal elements that transfer information vertically through the retina. GLU-IR also was found in numerous amacrine cells in the mid and proximal inner nuclear layer as well as in the cytoplasm of horizontal cells, while the nucleus of horizontal cells was either lightly labeled or not labeled at all. GLU-IR was found in the outer plexiform layer and intensely in the inner plexiform layer, in which there was no apparent sublamination. Forty-seven percent of Type IB bipolar cells in the distal inner nuclear layer and 13% of the displaced bipolar cells were GABA-IR. All bipolar cells were also GLU-IR, indicating that GABA-IR bipolar cells were a subset of GLU-IR bipolar cells rather than a separate population. About 12% of the Type IB bipolar cells were moderately GABA-IR and likely comprised a GABAergic subtype. GLU-IR levels in the presumed GABAergic bipolar cells were higher than in other purely GLU-IR bipolar cells suggesting that these GABA-IR bipolar cells are glutamatergic as well. All of the displaced bipolar cells were only lightly GABA-IR, indicating that displaced bipolar cells comprise a more homogeneous class of glutamatergic cell than orthotopic bipolar cells. GAD-IR co-localized with GABA-IR in orthotopic but not displaced bipolar cells, further supporting the idea that some orthotopic bipolar cells are GABAergic. A small proportion of bipolar cells in salamander retina contain relatively high levels of both GABA and glutamate. Co-release of these substances by bipolar cells could contribute to the “push-pull” modulation of ganglion cell responses.


2000 ◽  
Vol 17 (1) ◽  
pp. 1-9 ◽  
Author(s):  
DAVID V. POW ◽  
ANITA E. HENDRICKSON

Previous studies show that glycine transporter-1 (glyt-1) is a consistent membrane marker of adult retinal neurons that are likely to release glycine at their synaptic terminals (Pow, 1998; Vaney et al., 1998; Pow & Hendrickson, 1999). The current study investigated when glyt-1 immunoreactivity appeared in the postnatal rat retina, and whether all glycine-containing neurons also labelled for glyt-1. Ganglion cells, horizontal cells, and photoreceptors showed transient labelling. Many cells in the ganglion cell layer are immunoreactive for both glycine and glyt-1 at postnatal day (Pd) 1 but both are minimal by Pd5. Transient immunoreactivity for both glyt-1 and glycine was observed in presumptive horizontal cells between Pd5 and Pd10. At Pd1 many cells in the outer part of the retina which resembled immature photoreceptors were heavily labelled for glycine, but did not express glyt-1; these disappeared at older ages. These findings suggest diverse mechanisms and transient roles for glycine in the developing rat retina. In the adult rat retina, a subpopulation of amacrine cells are prominently immunoreactive for both glycine and glyt-1. These cells labelled for glycine at Pd1, but did not express significant levels of glyt-1 until Pd5. Processes from these amacrine cells did not reach the inner half of the inner plexiform layer until Pd10–14. Bipolar cells became glycine-IR between Pd10 and Pd14, but consistently lacked any glyt-1 immunoreactivity. This temporal pattern of labelling strongly indicates that bipolar cells label for glycine when gap junctions become functional between glycine/glyt-1 immunoreactive amacrine cells and cone bipolar cells.


1992 ◽  
Vol 9 (3-4) ◽  
pp. 313-323 ◽  
Author(s):  
David M. Sherry ◽  
Robert J. Ulshafer

AbstractImmunocytochemical and autoradiographic methods were used to identify neurons in the pure cone retina of the lizard (Anolis carolinensis) that are likely to employ glutamate (GLU) or aspartate (ASP) as a neurotransmitter.GLU immunocytochemistry demonstrated high levels of endogenous GLU in all cone types and numerous bipolar cells. Moderate GLU levels were found in horizontal and ganglion cells. Müller cells and most amacrine cells had very low GLU levels. GLU immunoreactivity (GLU-IR) in the cones was present from the inner segment to the synaptic pedicle. A large spherical cell type with moderate GLU-IR was identified in the proximal inner plexiform layer (IPL). These cells also contain ASP and have been tentatively identified as amacrine cells. Uptake of [3H]-L-GLU labeled all retinal layers. All cone types and Müller cells sequestered [3H]-D-ASP, a substrate specific for the GLU transporter.Anti-ASP labeling was observed in cones, horizontal cells, amacrine cells, and cells in the ganglion cell layer. ASP immunoreactivity (ASP-IR) in the cones was confined to the inner segment. One ASP-containing pyriform amacrine cell subtype ramifying in IPL sublamina b was identified.Analysis of GLU-IR, ASP-IR, and GABA-IR on serial sections indicated that there were two distinct populations of horizontal cells in the Anolis retina: one containing GABA-IR, GLU-IR, and ASP-IR; and another type containing only GLU-IR and ASP-IR. Light GLU-IR was frequently found in GABA-containing amacrine cells but ASP-IR was not.The distinct distributions of GLU and ASP may indicate distinctly different roles for these amino acids. GLU, not ASP, is probably the major neurotransmitter in the cone-biploar-ganglion cell pathway of the Anolis retina. Both GLU and ASP are present in horizontal cells and specific subpopulations of amacrine cells, but it is unclear if GLU or ASP have a neurotransmitter role in these cells.


1999 ◽  
Vol 16 (3) ◽  
pp. 483-490 ◽  
Author(s):  
V.P. CONNAUGHTON ◽  
T.N. BEHAR ◽  
W.-L.S. LIU ◽  
S.C. MASSEY

The patterns of glutamate, γ-aminobutyric acid (GABA), and glycine distribution in the zebrafish retina were determined using immunocytochemical localization of antisera at the light-microscope level. The observed GABA immunoreactivity (GABA-IR) patterns were further characterized using antibodies to both isoforms of glutamic acid decarboxylase (GAD65 and GAD67), the synthetic enzyme for GABA. Glutamate-IR was observed in all retinal layers with photoreceptors, bipolar cells, and ganglion cells prominently labeled. Bipolar cells displayed the most intense glutamate-IR and bipolar cell axon terminals were clearly identified as puncta arranged in layers throughout the inner plexiform layer (IPL). These findings suggest the presence of multiple subtypes of presumed OFF- and ON-bipolar cells, including some ON-bipolar cells characterized by a single, large (9 μm × 6 μm) axon terminal. GABA-, GAD-, and glycine-IR were most intense in the inner retina. In general, the observed labeling patterns for GABA, GAD65, and GAD67 were similar. GABA- and GAD-IR were observed in a population of amacrine cells, a few cells in the ganglion cell layer, throughout the IPL, and in horizontal cells. In the IPL, both GABA- and GAD-IR structures were organized into two broad bands. Glycine-IR was observed in amacrine cells, interplexiform cells, and in both plexiform layers. Glycine-positive terminals were identified throughout the IPL, with a prominent band in sublamina 3 corresponding to an immunonegative region observed in sections stained for GAD and GABA. Our results show the distribution of neurons in the zebrafish retina that use glutamate, GABA, or glycine as their neurotransmitter. The observed distribution of neurotransmitters in the inner retina is consistent with previous studies of other vertebrates and suggests that the advantages of zebrafish for developmental studies may be exploited for retinal studies.


1999 ◽  
Vol 16 (6) ◽  
pp. 1105-1114 ◽  
Author(s):  
PU QIN ◽  
ROBERTA G. POURCHO

AMPA-selective glutamate receptors play a major role in glutamatergic neurotransmission in the retina and are expressed in a variety of neuronal subpopulations. In the present study, immunocytochemical techniques were used to visualize the distribution of GluR2 and GluR4 subunits in the cat retina. Results were compared with previous localizations of GluR1 and GluR2/3. Staining for GluR2 was limited to a small number of amacrine and ganglion cells whereas GluR4 staining was present in A-type horizontal cells, many amacrine cells including type AII amacrine cells, and the majority of the cells in the ganglion cell layer. Analysis of synaptic relationships in the outer plexiform layer showed the GluR4 subunit to be concentrated at the contacts of cone photoreceptors with A-horizontal cells. In the inner plexiform layer, both GluR2 and GluR4 were postsynaptic to cone bipolar cells at dyad contacts although GluR2 staining was limited to one of the postsynaptic elements whereas GluR4 immunoreactivity was often seen in both postsynaptic elements. Unlike GluR2, GluR4 was also postsynaptic to rod bipolar cells where it could be visualized in processes of AII amacrine cells. The data indicate that GluR3 and GluR4 subunits are colocalized in a number of cell types including A-type horizontal cells, AII amacrine cells, and alpha ganglion cells, but whether they are combined in the same multimeric receptors remains to be determined.


1999 ◽  
Vol 16 (1) ◽  
pp. 169-177 ◽  
Author(s):  
PU QIN ◽  
ROBERTA G. POURCHO

The distribution of AMPA-selective glutamate receptor subunits was studied in the cat retina using antisera against GluR1 and GluR2/3. Both antisera were localized in postsynaptic sites in the outer plexiform layer (OPL) as well as the inner plexiform layer (IPL). Immunoreactivity for GluR1 was seen in a subpopulation of OFF cone bipolar cells and a number of amacrine and ganglion cells. Within the IPL, processes staining for GluR1 received input from OFF and ON cone bipolar cells but not from rod bipolars. Labeling for GluR2/3 was seen in horizontal cells, an occasional cone bipolar cell, and numerous amacrine and ganglion cells. In the IPL, GluR2/3 staining was postsynaptic to cone bipolar cells in both sublaminae. AII amacrine cells which receive rod bipolar input were also labeled for GluR2/3. With both antisera, staining was limited to a single member of the bipolar dyad complex, providing morphological evidence for functional diversity in glutamatergic pathways.


Sign in / Sign up

Export Citation Format

Share Document