scholarly journals Krill transport in the Scotia Sea and environs

1998 ◽  
Vol 10 (4) ◽  
pp. 406-415 ◽  
Author(s):  
Eileen E. Hofmann ◽  
John M. Klinck ◽  
Ricardo A. Locarnini ◽  
Bettina Fach ◽  
Eugene Murphy

Historical observations of the large-scale flow and frontal structure of the Antarctic Circumpolar Current in the Scotia Sea region were combined with the wind-induced surface Ekman transport to produce a composite flow field. This was used with a Lagrangian model to investigate transport of Antarctic krill. Particle displacements from known krill spawning areas that result from surface Ekman drift, a composite large-scale flow, and the combination of the two were calculated. Surface Ekman drift alone only transports particles a few kilometres over the 150-day krill larval development time. The large-scale composite flow moves particles several hundreds of kilometres over the same time, suggesting this is the primary transport mechanism. An important contribution of the surface Ekman drift on particles released along the continental shelf break west of the Antarctic Peninsula is moving them north-northeast into the high-speed core of the southern Antarctic Circumpolar Current Front, which then transports the particles to South Georgia in about 140–160 days. Similar particle displacement calculations using surface flow fields obtained from the Fine Resolution Antarctic Model do not show overall transport from the Antarctic Peninsula to South Georgia due to the inaccurate position of the southern Antarctic Circumpolar Current Front in the simulated circulation fields. The particle transit times obtained with the composite large-scale flow field are consistent with regional abundances of larval krill developmental stages collected in the Scotia Sea. These results strongly suggest that krill populations west of the Antarctic Peninsula provide the source for the krill populations found around South Georgia.

2010 ◽  
Vol 67 (8) ◽  
pp. 1303-1315 ◽  
Author(s):  
Julian Ashford ◽  
Mario La Mesa ◽  
Bettina A. Fach ◽  
Christopher Jones ◽  
Inigo Everson

We measured the otolith chemistry of adult Scotia Sea icefish ( Chaenocephalus aceratus ), a species with a long pelagic larval phase, along the Antarctic Circumpolar Current (ACC) and compared the chemistry with simulated particle transport using a circulation model. Material laid down in otolith nuclei during early life showed (i) strong heterogeneity between the Antarctic Peninsula and South Georgia consistent with a population boundary, (ii) evidence of finer-scale heterogeneity between sampling areas on the Antarctic Peninsula, and (iii) similarity between the eastern and northern shelves of South Georgia, indicating a single, self-recruiting population there. Consistent with the otolith chemistry, simulations of the large-scale circulation predicted that particles released at depths of 100–300 m on the Antarctic Peninsula shelf during spring, corresponding to hatching of icefish larvae from benthic nests, are transported in the southern ACC, missing South Georgia but following trajectories along the southern Scotia Ridge instead. These results suggest that the timing of release and position of early life stages in the water column substantially influence the direction and extent of connectivity. Used in complement, the two techniques promise an innovative approach for generating and testing predictions to resolve early dispersal and connectivity of populations related to the physical circulation of oceanic systems.


2019 ◽  
Vol 49 (12) ◽  
pp. 3221-3244 ◽  
Author(s):  
Ryan D. Patmore ◽  
Paul R. Holland ◽  
David R. Munday ◽  
Alberto C. Naveira Garabato ◽  
David P. Stevens ◽  
...  

AbstractIn the Southern Ocean the Antarctic Circumpolar Current is significantly steered by large topographic features, and subpolar gyres form in their lee. The geometry of topographic features in the Southern Ocean is highly variable, but the influence of this variation on the large-scale flow is poorly understood. Using idealized barotropic simulations of a zonal channel with a meridional ridge, it is found that the ridge geometry is important for determining the net zonal volume transport. A relationship is observed between ridge width and volume transport that is determined by the form stress generated by the ridge. Gyre formation is also highly reliant on the ridge geometry. A steep ridge allows gyres to form within regions of unblocked geostrophic (f/H) contours, with an increase in gyre strength as the ridge width is reduced. These relationships among ridge width, gyre strength, and net zonal volume transport emerge to simultaneously satisfy the conservation of momentum and vorticity.


2001 ◽  
Author(s):  
Andrés Maldonado ◽  
Antonio Barnolas ◽  
Fernando Bohoyo ◽  
Javier Hernández-Molina ◽  
Jesús Galindo-Zaldívar ◽  
...  

2001 ◽  
Vol 13 (1) ◽  
pp. 61-66
Author(s):  
Norman Hamilton ◽  
Carol J. Pudsey

Magnetic properties of bulk sediment samples taken from three cores from the Scotia Sea, Antarctica were determined using a fully-automated variable field translation balance. Fine-grained detrital magnetite is identified as the principal carrier of remanence in these Upper Quaternary sediments which were deposited under the influence of the Antarctic Circumpolar Current. Inferred magnetite grain-size is consistent with published bulk grain-size data for these cores. Pseudo-single domain grains characterize Holocene samples, and larger, multi-domain grains occur in glacial samples from two of the cores, whereas samples from the northernmost core site show dominantly multi-domain behaviour.


2011 ◽  
Vol 18 (3) ◽  
pp. 361-365 ◽  
Author(s):  
O. G. Derzho ◽  
B. de Young

Abstract. In this paper we present a simple analytical model for low frequency and large scale variability of the Antarctic Circumpolar Current (ACC). The physical mechanism of the variability is related to temporal and spatial variations of the cyclonic mean flow (ACC) due to circularly propagating nonlinear barotropic Rossby wave trains. It is shown that the Rossby wave train is a fundamental mode, trapped between the major fronts in the ACC. The Rossby waves are predicted to rotate with a particular angular velocity that depends on the magnitude and width of the mean current. The spatial structure of the rotating pattern, including its zonal wave number, is defined by the specific form of the stream function-vorticity relation. The similarity between the simulated patterns and the Antarctic Circumpolar Wave (ACW) is highlighted. The model can predict the observed sequence of warm and cold patches in the ACW as well as its zonal number.


Sign in / Sign up

Export Citation Format

Share Document