ocean currents
Recently Published Documents


TOTAL DOCUMENTS

970
(FIVE YEARS 202)

H-INDEX

51
(FIVE YEARS 6)

Author(s):  
Neethu Chacko ◽  
M M Ali

This study examines the effect of surface currents on the bulk algorithm calculation of wind stress estimated using the scatterometer data during 2007-2020 in the Indian Ocean. In the study region as a whole the wind stress decreased by 5.4% by including currents into the wind stress equation. The most significant reduction in the wind stress is found along the most energetic regions with strong currents such as Somali Current, Equatorial Jets and Aghulhas retroflection. A highest reduction of 11.5% is observed along the equator where the Equatorial Jets prevail. A sensitivity analysis has been carried out for the study region and for different seasons to assess the relative impact of winds and currents in the estimation of wind stress by changing the winds while keeping the currents constants and vice versa. The inclusion of currents decreased the wind stress and this decrease is prominent when the currents are stronger. This study showed that equatorial Indian Ocean is the most sensitive region where the current can impact on wind stress estimation. The results showed that uncertainties in the wind stress estimations are quite large at regional levels and hence better representation of wind stress incorporating ocean currents should be considered in the ocean/climatic models for accurate air-sea interaction studies.


2021 ◽  
Vol 33 (6) ◽  
pp. 1223-1233
Author(s):  
Hirokazu Yamagata ◽  
Shuma Kochii ◽  
Hiroshi Yoshida ◽  
Yoshifumi Nogi ◽  
Toshihiro Maki ◽  
...  

The melting of ice and changes in ocean currents in Antarctica must be investigated to understand global climate change. In this regard, the volume changes of sea ice and ice shelves, bathymetry, and ocean currents in the Antarctic Ocean must be measured in three dimensions. Therefore, the use of autonomous underwater vehicles (AUVs), which can directly observe under ice, is being considered. The authors developed an AUV named Mobility Oriented Nadir AntarctiC Adventurer (MONACA) to observe sea ice and the lower region of the ice shelf in the Antarctic Ocean. Herein, we describe MONACA and its basic autonomous navigation methods (altitude control, depth control, and waypoint tracking), as well as report the results of a sea experiment conducted in Shimoda Bay, Japan. During the 5-day sea trial, the MONACA successfully measured bathymetry by tracking 15 waypoints in sequence, switching the control criteria in the -axis direction between 3 m depth and 3 m altitude.


2021 ◽  
Vol 13 (24) ◽  
pp. 13967
Author(s):  
Bozena McCarthy ◽  
Samuel Obeng Apori ◽  
Michelle Giltrap ◽  
Abhijnan Bhat ◽  
James Curtin ◽  
...  

The present study employs a data review on the presence and aggregation of oxytetracycline (OTC) and resistance (AMR) bacteria in wastewater treatment plants (WWTPs), and the distribution of the contaminated effluent with the aid of shallow and deep ocean currents. The study aims to determine the fate of OTC and AMR bacteria in seafood, and demonstrate a relationship between AMR levels and human health. This review includes (1) OTC, (2) AMR bacteria, (3) heavy metals in aquatic environments, and their relationship. Few publications describe OCT in surface waters. Although OTC and other tetracyclines were found in 10 countries in relatively low concentrations, the continuous water mass movement poses a contamination risk for mariculture and aquaculture. There are 10 locations showing AMR bacteria in treated and untreated hospital effluent. Special effort was made to define the geography distribution of OTC, AMR bacteria, and heavy metals detected in WWTPs to show the likely dissemination in an aquatic environment. The presence of OTC in surface waters in Asia, USA, and Europe can potentially impact seafood globally with the aid of ocean currents. Moreover, low concentrations of heavy metals exert environmental pressure and contribute to AMR dissemination. Recommended solutions are (1) quantitative analysis of OTC, heavy metals, and AMR bacteria to define their main sources; (2) employing effective technologies in urban and industrial wastewater treatment; and (3) selecting appropriate modelling from Global Ocean Observing System to predict the OTC, heavy metals, and AMR bacteria distribution.


2021 ◽  
Vol 9 (12) ◽  
pp. 1425
Author(s):  
Shueei-Muh Lin ◽  
Yang-Yih Chen ◽  
Chihng-Tsung Liauh

This research proposes a mooring design which keeps the turbine ocean current, static, balanced, and fixed at a predetermined depth under water, to ensure that the ocean current generator can effectively use current to generate electricity, and that the water pressure remains adequate value before critical pressure damage occurs. In this design, the turbine generator, which withstands the force of ocean currents, is mounted in front of a floating platform by ropes, and the platform is anchored to the deep seabed with light-weight high-strength PE ropes. In addition, a pontoon is connected to the ocean current generator with a rope. The balance is reached by the ocean current generator weight, floating pontoon, and the tension of the ropes which are connected between the generator and floating platform. Therefore, both horizontal and vertical forces become static and the depth can be determined by the length of the rope. Because the floating platform and pontoons on the water surface are significantly affected by waves, the two devices subjected to the wave exciting forces are further affected by the movement of the platform, pontoons, turbines, and the tensions of the ropes. Among them, the exciting forces depend on the operating volume of the two devices. Moreover, there is a phase difference between the floating platform and the pontoon under the action of the waves. In this study, the linear elastic model is used to simulate the motion equation of the overall mooring system. A theoretical solution of the static and dynamic stability analysis of the mooring system is proposed. The dynamic behaviors of the turbine, the floating platform, the pontoon, and the tension of the rope under the effects of waves and ocean currents are investigated. The study found the relationship of the phase difference and the direction difference of waves and ocean currents, the wavelength, and the length of the rope between the carrier and the turbine. It was found that the phase difference has a great influence on the dynamic behaviors of the system. The length of the rope can be adjusted to avoid resonance and reduce the rope tension. In addition, a buffer spring can be used to reduce the dynamic tension of the rope significantly to ensure the safety and life of the rope.


Author(s):  
Kojin Tsuchiya ◽  
Yuna Zayasu ◽  
Yuichi Nakajima ◽  
Nana Arakaki ◽  
Go Suzuki ◽  
...  

Understanding the structure and connectivity of coral populations is fundamental for developing marine conservation policies, especially in patchy environments such as archipelagos. The Nansei Islands, extending more than 1,000 km in southwestern Japan, are characterized by high levels of biodiversity and endemism, supported by coral reefs, although precise, detailed genetic attributes of corals are still largely unknown. In this study, we conducted population genomic analyses based on genome-wide, single-nucleotide polymorphisms (SNPs) of Acropora digitifera, a common species in the Nansei Islands, for which a complete genome is available. With ~24x sequencing coverage of entire genomes of 303 colonies collected at 21 locations, we identified more than four million genome-wide SNPs. While population structure analyses suggested weak genetic differentiation among sampled locations, the most southwestern location (the west end of the Yaeyama Islands) was genetically similar to the northernmost location (the Tanegashima Islands), separated by >1,000 km. Although examination of a migration network found a general tendency of northward migration along the Kuroshio Current, a substantial amount of southward migration was also detected, indicating important contributions of minor ocean currents to coral larval dispersal. Moreover, heterogeneity in the transition of effective population sizes among locations suggests different histories for individual subpopulations. The unexpected complexity of both past and present population dynamics in the Nansei Islands implies that heterogeneity of ocean currents and local environments, past and present, have influenced the population structure of this species, highlighting the importance of local scale assessments for effective coral restoration and management.


2021 ◽  
pp. 162-178
Author(s):  
Jorge Daniel Taillant

This chapter is divided into four sections, describing various impacts of glacier melt on different Earth ecosystems, including the effects of melting ice and water temperature on changes to ocean currents, on the global air Jet Stream, and on land surfaces, such as the popping up effect (the surface rebound effect) of the Earth once glaciers recede. It discusses the role of glacier meltwater for energy generation, as well as the impacts of the acceleration of glacier melt on flora and fauna, such as polar bears, salmon, and river bed and riparian biota.


2021 ◽  
Vol 925 (1) ◽  
pp. 012014
Author(s):  
D R Junita ◽  
L Gustiantini ◽  
A Sartimbul ◽  
L I Bernawis ◽  
S A Piranti

Abstract Foraminifera is very diverse and adaptive, both in its morphology and biology. It is a potential bioindicator to understand the ecological and physical conditions of the ancient and modern waters based on their distribution. It has been well confirmed that the abundance of foraminifera (as a fossil) in sediment can reflect the ocean conditions above (mixed layer to upper ocean) where it was deposited. Planktonic foraminifera however can be considered as passive particles, their movement is carried by ocean currents. In consequence, the foraminifera abundance may represent more wider ocean condition according to the ocean current pattern. This study aims to examine the role of ocean currents in the distribution of foraminifera in the Sulawesi Sea. Ten gravity core sediment samples from 73-3009 m water depth were retrieved by RV Geomarin III from the Marine Geological Institute, Indonesia. We conducted quantitative analysis, including calculation of abundance and cluster analysis. Two decades (1992-2012) of ocean current simulated data from the Hybrid Coordinate Ocean Model (HYCOM) is used in this analysis, extending from 115°E-140°E and 8°N-2°S. The result indicates that planktonic foraminifera is abundant in the Sulawesi Sea by 86.3%. There were several predominant planktonic species such as Globigerinoides ruber (22.6%), Globigerina bulloides (15.3%), and Neoglobuquadrina dutertrei (10.1%). The ocean current above the sample location is constantly moving eastward as a part of the NECC. The average currents velocity shows that foraminifera in sample site S-03 with depth 2064 m may originated from up to 1035 kilometers away from its recent location.


Sign in / Sign up

Export Citation Format

Share Document