scholarly journals Enumerating the strings of regular languages

2004 ◽  
Vol 14 (5) ◽  
pp. 503-518 ◽  
Author(s):  
M. DOUGLAS McILROY

Haskell code is developed for two ways to list the strings of the language defined by a regular expression: directly by set operations and indirectly by converting to and simulating an equivalent automaton. The exercise illustrates techniques for dealing with infinite ordered domains and leads to an effective standard form for nondeterministic finite automata.

Author(s):  
Robert S. R. Myers ◽  
Stefan Milius ◽  
Henning Urbat

AbstractWe introduce a new measure on regular languages: their nondeterministic syntactic complexity. It is the least degree of any extension of the ‘canonical boolean representation’ of the syntactic monoid. Equivalently, it is the least number of states of any subatomic nondeterministic acceptor. It turns out that essentially all previous structural work on nondeterministic state-minimality computes this measure. Our approach rests on an algebraic interpretation of nondeterministic finite automata as deterministic finite automata endowed with semilattice structure. Crucially, the latter form a self-dual category.


1977 ◽  
Vol 6 (82) ◽  
Author(s):  
Erik Meineche Schmidt

<p>The gain in succinctness of descriptions of regular languages when nondeterministic (unambiguous) finite automata are used rather than unambiguous (deterministic) finite automata, is not bounded by any polynomium.</p><p>The problem of deciding whether an unambiguous regular expression does not generate all words over its terminal alphabet, is in NP.</p>


2003 ◽  
Vol 14 (06) ◽  
pp. 1087-1102 ◽  
Author(s):  
MARKUS HOLZER ◽  
MARTIN KUTRIB

We investigate the descriptional complexity of operations on finite and infinite regular languages over unary and arbitrary alphabets. The languages are represented by nondeterministic finite automata (NFA). In particular, we consider Boolean operations, catenation operations – concatenation, iteration, λ-free iteration – and the reversal. Most of the shown bounds are tight in the exact number of states, i.e. the number is sufficient and necessary in the worst case. Otherwise tight bounds in the order of magnitude are shown.


2005 ◽  
Vol 16 (05) ◽  
pp. 975-984 ◽  
Author(s):  
HING LEUNG

In this paper, we study the tradeoffs in descriptional complexity of NFA (nondeterministic finite automata) of various amounts of ambiguity. We say that two classes of NFA are separated if one class can be exponentially more succinct in descriptional sizes than the other. New results are given for separating DFA (deterministic finite automata) from UFA (unambiguous finite automata), UFA from MDFA (DFA with multiple initial states) and UFA from FNA (finitely ambiguous NFA). We present a family of regular languages that we conjecture to be a good candidate for separating FNA from LNA (linearly ambiguous NFA).


2008 ◽  
Vol 19 (04) ◽  
pp. 813-826 ◽  
Author(s):  
REMCO LOOS ◽  
ANDREAS MALCHER ◽  
DETLEF WOTSCHKE

In this paper, the descriptional complexity of extended finite splicing systems is studied. These systems are known to generate exactly the class of regular languages. Upper and lower bounds are shown relating the size of these splicing systems, defined as the total length of the rules and the initial language of the system, to the size of their equivalent minimal nondeterministic finite automata (NFA). In addition, an accepting model of extended finite splicing systems is studied. Using this variant one can obtain systems which are more than polynomially more succinct than the equivalent NFA or generating extended finite splicing system.


Author(s):  
Benedek Nagy

Union-free expressions are regular expressions without using the union operation. Consequently, (nondeterministic) union-free languages are described by regular expressions using only concatenation and Kleene star. The language class is also characterised by a special class of finite automata: 1CFPAs have exactly one cycle-free accepting path from each of their states. Obviously such an automaton has exactly one accepting state. The deterministic counterpart of such class of automata defines the deterministic union-free (d-union-free, for short) languages. In this paper [Formula: see text]-free nondeterministic variants of 1CFPAs are used to define n-union-free languages. The defined language class is shown to be properly between the classes of (nondeterministic) union-free and d-union-free languages (in case of at least binary alphabet). In case of unary alphabet the class of n-union-free languages coincides with the class of union-free languages. Some properties of the new subregular class of languages are discussed, e.g., closure properties. On the other hand, a regular expression is in union normal form if it is a finite union of union-free expressions. It is well known that every regular expression can be written in union normal form, i.e., all regular languages can be described as finite unions of (nondeterministic) union-free languages. It is also known that the same fact does not hold for deterministic union-free languages, that is, there are regular languages that cannot be written as finite unions of d-union-free languages. As an important result here we show that every regular language can be defined by a finite union of n-union-free languages. This fact also allows to define n-union-complexity of regular languages.


2008 ◽  
Vol 19 (04) ◽  
pp. 795-811 ◽  
Author(s):  
MARTIN KUTRIB ◽  
JENS REIMANN

The simulation of weak restarting automata, i.e., classical restarting automata accepting exactly the regular languages, by finite automata is studied. Some of the trade-offs in the number of states when changing the representation are known. Here we continue the investigation in order to draw an almost complete picture of the descriptional power gained in the additional structural resources of weak restarting automata. In particular, for det-RR(1)-simulations of nondeterministic finite automata we obtain the same tight bounds as for simulations of R(1)-automata, though in some cases the latter class is much more efficient than the former. Moreover, the DFA-simulation of det-RR(1)-automata is considered. The shown bounds are of factorial order and are tight. The constructions are via alternating finite automata to DFAs. So, in addition, an upper bound for the AFA-simulation is obtained.


Sign in / Sign up

Export Citation Format

Share Document