Some Details of Flint Fracture

1914 ◽  
Vol 1 (4) ◽  
pp. 442-445
Author(s):  
J. Reid Moir

It is my purpose in this paper to tabulate and describe some of the details of flint fracture, which, in my opinion, are very necessary for the prehistorian to understand and recognise, and a knowledge of which makes the study of flint implements much easier and more entertaining. The correctness of some of my explanations of these various details may be challenged, but the majority of them are, I think, in accord with the views of most investigators and will be generally accepted.A part of the ground which will be traversed in this paper has already been gone over, but I am anxious to put all the facts at present ascertained regarding the fracture of flint into a compact form which can easily be referred to and may be of use to serious prehistorians. I hope that this will be considered sufficient excuse for recapitulating some of the facts which have already been brought forward.Striking Platforms. When an ordinary rounded nodule of flint is selected with a view to produce an implement from it by flaking, it is necessary, owing to the difficulty of removing flakes from a rounded or irregular surface, to break off a portion of the nodule so that a flat surface is produced from which flakes can be struck with precision. The flakes which are removed will exhibit, just above the point where the blows fell which detached them (known as “the point of impact”), a portion of this flat surface, and this is termed the “striking platform.”

1966 ◽  
Vol 25 ◽  
pp. 323-325 ◽  
Author(s):  
B. Garfinkel

The paper extends the known solution of the Main Problem to include the effects of the higher spherical harmonics of the geopotential. The von Zeipel method is used to calculate the secular variations of orderJmand the long-periodic variations of ordersJm/J2andnJm,λ/ω. HereJmandJm,λare the coefficients of the zonal and the tesseral harmonics respectively, withJm,0=Jm, andωis the angular velocity of the Earth's rotation. With the aid of the theory of spherical harmonics the results are expressed in a most compact form.


Author(s):  
Chang Shen ◽  
Phil Fraundorf ◽  
Robert W. Harrick

Monolithic integration of optoelectronic integrated circuits (OEIC) requires high quantity etched laser facets which prevent the developing of more-highly-integrated OEIC's. The causes of facet roughness are not well understood, and improvement of facet quality is hampered by the difficulty in measuring the surface roughness. There are several approaches to examining facet roughness qualitatively, such as scanning force microscopy (SFM), scanning tunneling microscopy (STM) and scanning electron microscopy (SEM). The challenge here is to allow more straightforward monitoring of deep vertical etched facets, without the need to cleave out test samples. In this presentation, we show air based STM and SFM images of vertical dry-etched laser facets, and discuss the image acquisition and roughness measurement processes. Our technique does not require precision cleaving. We use a traditional tip instead of the T shape tip used elsewhere to preventing “shower curtain” profiling of the sidewall. We tilt the sample about 30 to 50 degrees to avoid the curtain effect.


Author(s):  
B. R. Ahn ◽  
N. J. Kim

High energy approximation in dynamic theory of electron diffraction involves some intrinsic problems. First, the loss of theoretical strictness makes it difficult to comprehend the phenomena of electron diffraction. Secondly, it is difficult to believe that the approximation is reasonable especially in the following cases: 1) when accelerating voltage is not sufficiently high, 2) when the specimen is thick, 3) when the angle between the surface normal of the specimen and zone axis is large, and 4) when diffracted beam with large diffraction angle is included in the calculation. However, until now the method to calculate the many beam dynamic electron diffraction without the high energy approximation has not been proposed. For this reason, the authors propose a method to eliminate the high energy approximation in the calculation of many beam dynamic electron diffraction. In this method, a perfect crystal with flat surface was assumed. The method was applied to the calculation of [111] zone axis CBED patterns of Si.


2005 ◽  
Vol 33 (3) ◽  
pp. 156-178 ◽  
Author(s):  
T. J. LaClair ◽  
C. Zarak

Abstract Operating temperature is critical to the endurance life of a tire. Fundamental differences between operations of a tire on a flat surface, as experienced in normal highway use, and on a cylindrical test drum may result in a substantially higher tire temperature in the latter case. Nonetheless, cylindrical road wheels are widely used in the industry for tire endurance testing. This paper discusses the important effects of surface curvature on truck tire endurance testing and highlights the impact that curvature has on tire operating temperature. Temperature measurements made during testing on flat and curved surfaces under a range of load, pressure and speed conditions are presented. New tires and re-treaded tires of the same casing construction were evaluated to determine the effect that the tread rubber and pattern have on operating temperatures on the flat and curved test surfaces. The results of this study are used to suggest conditions on a road wheel that provide highway-equivalent operating conditions for truck tire endurance testing.


Sign in / Sign up

Export Citation Format

Share Document