scholarly journals Wadge-like reducibilities on arbitrary quasi-Polish spaces

2014 ◽  
Vol 25 (8) ◽  
pp. 1705-1754 ◽  
Author(s):  
LUCA MOTTO ROS ◽  
PHILIPP SCHLICHT ◽  
VICTOR SELIVANOV

The structure of the Wadge degrees on zero-dimensional spaces is very simple (almost well ordered), but for many other natural nonzero-dimensional spaces (including the space of reals) this structure is much more complicated. We consider weaker notions of reducibility, including the so-called Δ0α-reductions, and try to find for various natural topological spaces X the least ordinal αX such that for every αX ⩽ β < ω1 the degree-structure induced on X by the Δ0β-reductions is simple (i.e. similar to the Wadge hierarchy on the Baire space). We show that αX ⩽ ω for every quasi-Polish space X, that αX ⩽ 3 for quasi-Polish spaces of dimension ≠ ∞, and that this last bound is in fact optimal for many (quasi-)Polish spaces, including the real line and its powers.

2016 ◽  
Vol 28 (3) ◽  
pp. 429-447 ◽  
Author(s):  
MARGARITA KOROVINA ◽  
OLEG KUDINOV

In the framework of effectively enumerable topological spaces, we introduce the notion of a partial computable function. We show that the class of partial computable functions is closed under composition, and the real-valued partial computable functions defined on a computable Polish space have a principal computable numbering. With respect to the principal computable numbering of the real-valued partial computable functions, we investigate complexity of important problems such as totality and root verification. It turns out that for some problems the corresponding complexity does not depend on the choice of a computable Polish space, whereas for other ones the corresponding choice plays a crucial role.


2020 ◽  
Vol 26 (1) ◽  
pp. 1-14
Author(s):  
MARCIN MICHALSKI ◽  
ROBERT RAŁOWSKI ◽  
SZYMON ŻEBERSKI

AbstractIn this paper, we consider a notion of nonmeasurablity with respect to Marczewski and Marczewski-like tree ideals $s_0$ , $m_0$ , $l_0$ , $cl_0$ , $h_0,$ and $ch_0$ . We show that there exists a subset of the Baire space $\omega ^\omega ,$ which is s-, l-, and m-nonmeasurable that forms a dominating m.e.d. family. We investigate a notion of ${\mathbb {T}}$ -Bernstein sets—sets which intersect but do not contain any body of any tree from a given family of trees ${\mathbb {T}}$ . We also obtain a result on ${\mathcal {I}}$ -Luzin sets, namely, we prove that if ${\mathfrak {c}}$ is a regular cardinal, then the algebraic sum (considered on the real line ${\mathbb {R}}$ ) of a generalized Luzin set and a generalized Sierpiński set belongs to $s_0, m_0$ , $l_0,$ and $cl_0$ .


1966 ◽  
Vol 18 ◽  
pp. 616-620 ◽  
Author(s):  
Kenneth D. Magill

It is assumed that all topological spaces discussed in this paper are Hausdorff. By a compactification αX of a space X we mean a compact space containing X as a dense subspace. If, for some positive integer n, αX — X consists of n points, we refer to αX as an n-point compactification of X, in which case we use the notation αn X. If αX — X is countable, we refer to αX as a countable compactification of X. In this paper, the statement that a set is countable means that its elements are in one-to-one correspondence with the natural numbers. In particular, finite sets are not regarded as being countable. Those spaces with n-point compactifications were characterized in (3). From the results obtained there it followed that the only n-point compactifications of the real line are the well-known 1- and 2-point compactifications and the only n-point compactification of the Euclidean N-space, EN (N > 1), is the 1-point compactification.


2016 ◽  
Vol 65 (1) ◽  
pp. 37-48
Author(s):  
Jacek Hejduk ◽  
Renata Wiertelak ◽  
Wojciech Wojdowski

Abstract Some kind of abstract density topology in a topological Baire space is considered. The semiregularization of this type of topology on the real line in many cases is the coarsest topology for which real functions continuous with respect to the abstract density topology are continuous.


Author(s):  
R. R. Ashurov ◽  
W. N. Everitt

The theory of ordinary linear quasi-differential expressions and operators has been extensively developed in integrable-square Hilbert spaces. There is also an extensive theory of ordinary linear differential expressions and operators in integrable-p Banach spaces.However, the basic definition of linear quasi-differential expressions involves Lebesgue locally integrable spaces on intervals of the real line. Such spaces are not Banach spaces but can be considered as complete locally convex linear topological spaces where the topology is derived from a countable family of semi-norms. The first conjugate space can also be defined as a complete locally convex linear topological space, but now with the topology derived as a strict inductive limit.This paper develops the properties of linear quasi-differential operators in a locally integrable space and the first conjugate space. Conjugate and preconjugate operators are defined in, respectively, dense and total domains.


2019 ◽  
Vol 74 (1) ◽  
pp. 145-158
Author(s):  
Jaroslav Šupina ◽  
Dávid Uhrik

Abstract We discuss several questions about Borel measurable functions on a topological space. We show that two Lindenbaum composition theorems [Lindenbaum, A. Sur les superpositions des fonctions représentables analytiquement, Fund. Math. 23 (1934), 15–37] proved for the real line hold in perfectly normal topological space as well. As an application, we extend a characterization of a certain class of topological spaces with hereditary Jayne-Rogers property for perfectly normal topological space. Finally, we pose an interesting question about lower and upper Δ02-measurable functions.


2000 ◽  
Vol 102 (5) ◽  
pp. 4508-4522 ◽  
Author(s):  
O. L. Semenova ◽  
A. A. Florinskii

2020 ◽  
Vol 6 (2) ◽  
pp. 108
Author(s):  
Tursun K. Yuldashev ◽  
Farhod G. Mukhamadiev

In this paper, the local density \((l d)\) and the local weak density \((l w d)\) in the space of permutation degree as well as the cardinal and topological properties of Hattori spaces are studied. In other words, we study the properties of the functor of permutation degree \(S P^{n}\) and the subfunctor of permutation degree \(S P_{G}^{n}\),  \(P\) is the cardinal number of topological spaces. Let \(X\) be an infinite \(T_{1}\)-space. We prove that the following propositions hold.(1) Let \(Y^{n} \subset X^{n}\); (A) if \(d\, \left(Y^{n} \right)=d\, \left(X^{n} \right)\), then \(d\, \left(S P^{n} Y\right)=d\, \left(SP^{n} X\right)\); (B) if \(l w d\, \left(Y^{n} \right)=l w d\, \left(X^{n} \right)\), then \(l w d\, \left(S P^{n} Y\right)=l w d\, \left(S P^{n} X\right)\). (2) Let \(Y\subset X\); (A) if \(l d \,(Y)=l d \,(X)\), then \(l d\, \left(S P^{n} Y\right)=l d\, \left(S P^{n} X\right)\); (B) if \(w d \,(Y)=w d \,(X)\), then \(w d\, \left(S P^{n} Y\right)=w d\, \left(S P^{n} X\right)\).(3) Let \(n\) be a positive integer, and let \(G\) be a subgroup of the permutation group \(S_{n}\). If \(X\) is a locally compact \(T_{1}\)-space, then \(S P^{n} X, \, S P_{G}^{n} X\), and \(\exp _{n} X\) are \(k\)-spaces.(4) Let \(n\) be a positive integer, and let \(G\) be a subgroup of the permutation group \(S_{n}\). If \(X\) is an infinite \(T_{1}\)-space, then \(n \,\pi \,w \left(X\right)=n \, \pi \,w \left(S P^{n} X \right)=n \,\pi \,w \left(S P_{G}^{n} X \right)=n \,\pi \,w \left(\exp _{n} X \right)\).We also have studied that the functors \(SP^{n},\) \(SP_{G}^{n} ,\) and \(\exp _{n} \) preserve any \(k\)-space. The functors \(SP^{2}\) and \(SP_{G}^{3}\) do not preserve Hattori spaces on the real line. Besides, it is proved that the density of an infinite \(T_{1}\)-space \(X\) coincides with the densities of the spaces \(X^{n}\), \(\,S P^{n} X\), and \(\exp _{n} X\). It is also shown that the weak density of an infinite \(T_{1}\)-space \(X\) coincides with the weak densities of the spaces \(X^{n}\), \(\,S P^{n} X\), and \(\exp _{n} X\).


Sign in / Sign up

Export Citation Format

Share Document