scholarly journals THE LOCAL DENSITY AND THE LOCAL WEAK DENSITY IN THE SPACE OF PERMUTATION DEGREE AND IN HATTORI SPACE

2020 ◽  
Vol 6 (2) ◽  
pp. 108
Author(s):  
Tursun K. Yuldashev ◽  
Farhod G. Mukhamadiev

In this paper, the local density \((l d)\) and the local weak density \((l w d)\) in the space of permutation degree as well as the cardinal and topological properties of Hattori spaces are studied. In other words, we study the properties of the functor of permutation degree \(S P^{n}\) and the subfunctor of permutation degree \(S P_{G}^{n}\),  \(P\) is the cardinal number of topological spaces. Let \(X\) be an infinite \(T_{1}\)-space. We prove that the following propositions hold.(1) Let \(Y^{n} \subset X^{n}\); (A) if \(d\, \left(Y^{n} \right)=d\, \left(X^{n} \right)\), then \(d\, \left(S P^{n} Y\right)=d\, \left(SP^{n} X\right)\); (B) if \(l w d\, \left(Y^{n} \right)=l w d\, \left(X^{n} \right)\), then \(l w d\, \left(S P^{n} Y\right)=l w d\, \left(S P^{n} X\right)\). (2) Let \(Y\subset X\); (A) if \(l d \,(Y)=l d \,(X)\), then \(l d\, \left(S P^{n} Y\right)=l d\, \left(S P^{n} X\right)\); (B) if \(w d \,(Y)=w d \,(X)\), then \(w d\, \left(S P^{n} Y\right)=w d\, \left(S P^{n} X\right)\).(3) Let \(n\) be a positive integer, and let \(G\) be a subgroup of the permutation group \(S_{n}\). If \(X\) is a locally compact \(T_{1}\)-space, then \(S P^{n} X, \, S P_{G}^{n} X\), and \(\exp _{n} X\) are \(k\)-spaces.(4) Let \(n\) be a positive integer, and let \(G\) be a subgroup of the permutation group \(S_{n}\). If \(X\) is an infinite \(T_{1}\)-space, then \(n \,\pi \,w \left(X\right)=n \, \pi \,w \left(S P^{n} X \right)=n \,\pi \,w \left(S P_{G}^{n} X \right)=n \,\pi \,w \left(\exp _{n} X \right)\).We also have studied that the functors \(SP^{n},\) \(SP_{G}^{n} ,\) and \(\exp _{n} \) preserve any \(k\)-space. The functors \(SP^{2}\) and \(SP_{G}^{3}\) do not preserve Hattori spaces on the real line. Besides, it is proved that the density of an infinite \(T_{1}\)-space \(X\) coincides with the densities of the spaces \(X^{n}\), \(\,S P^{n} X\), and \(\exp _{n} X\). It is also shown that the weak density of an infinite \(T_{1}\)-space \(X\) coincides with the weak densities of the spaces \(X^{n}\), \(\,S P^{n} X\), and \(\exp _{n} X\).

Author(s):  
F.G. Mukhamadiev ◽  
◽  

A topological space X is locally weakly separable [3] at a point x∈X if x has a weakly separable neighbourhood. A topological space X is locally weakly separable if X is locally weakly separable at every point x∈X. The notion of local weak separability can be generalized for any cardinal τ ≥ℵ0 . A topological space X is locally weakly τ-dense at a point x∈X if τ is the smallest cardinal number such that x has a weak τ-dense neighborhood in X [4]. The local weak density at a point x is denoted as lwd(x). The local weak density of a topological space X is defined in following way: lwd ( X ) = sup{ lwd ( x) : x∈ X } . A topological space X is locally τ-dense at a point x∈X if τ is the smallest cardinal number such that x has a τ-dense neighborhood in X [4]. The local density at a point x is denoted as ld(x). The local density of a topological space X is defined in following way: ld ( X ) = sup{ ld ( x) : x∈ X } . It is known that for any topological space we have ld(X ) ≤ d(X ) . In this paper, we study questions of the local weak τ-density of topological spaces and establish sufficient conditions for the preservation of the property of a local weak τ-density of subsets of topological spaces. It is proved that a subset of a locally τ-dense space is also locally weakly τ-dense if it satisfies at least one of the following conditions: (a) the subset is open in the space; (b) the subset is everywhere dense in space; (c) the subset is canonically closed in space. A proof is given that the sum, intersection, and product of locally weakly τ-dense spaces are also locally weakly τ-dense spaces. And also questions of local τ-density and local weak τ-density are considered in locally compact spaces. It is proved that these two concepts coincide in locally compact spaces.


1966 ◽  
Vol 18 ◽  
pp. 616-620 ◽  
Author(s):  
Kenneth D. Magill

It is assumed that all topological spaces discussed in this paper are Hausdorff. By a compactification αX of a space X we mean a compact space containing X as a dense subspace. If, for some positive integer n, αX — X consists of n points, we refer to αX as an n-point compactification of X, in which case we use the notation αn X. If αX — X is countable, we refer to αX as a countable compactification of X. In this paper, the statement that a set is countable means that its elements are in one-to-one correspondence with the natural numbers. In particular, finite sets are not regarded as being countable. Those spaces with n-point compactifications were characterized in (3). From the results obtained there it followed that the only n-point compactifications of the real line are the well-known 1- and 2-point compactifications and the only n-point compactification of the Euclidean N-space, EN (N > 1), is the 1-point compactification.


1987 ◽  
Vol 36 (3) ◽  
pp. 469-474 ◽  
Author(s):  
Bau-Sen Du

Let I be the unit interval [0, 1] of the real line. For integers k ≥ 1 and n ≥ 2, we construct simple piecewise monotonic expanding maps Fk, n in C0 (I, I) with the following three properties: (1) The positive integer n is an expanding constant for Fk, n for all k; (2) The topological entropy of Fk, n is greater than or equal to log n for all k; (3) Fk, n has periodic points of least period 2k · 3, but no periodic point of least period 2k−1 (2m+1) for any positive integer m. This is in contrast to the fact that there are expanding (but not piecewise monotonic) maps in C0(I, I) with very large expanding constants which have exactly one fixed point, say, at x = 1, but no other periodic point.


1996 ◽  
Vol 61 (1) ◽  
pp. 246-249 ◽  
Author(s):  
Marion Scheepers

Let denote the ideal of Lebesgue measure zero subsets of the real line. Then add() denotes the minimal cardinality of a subset of whose union is not an element of . In [1] Bartoszynski gave an elegant combinatorial characterization of add(), namely: add() is the least cardinal number κ for which the following assertion fails:For every family of at mostκ functions from ω to ω there is a function F from ω to the finite subsets of ω such that:1. For each m, F(m) has at most m + 1 elements, and2. for each f inthere are only finitely many m such that f(m) is not an element of F(m).The symbol A(κ) will denote the assertion above about κ. In the course of his proof, Bartoszynski also shows that the cardinality restriction in 1 is not sharp. Indeed, let (Rm: m < ω) be any sequence of integers such that for each m Rm, ≤ Rm+1, and such that limm→∞Rm = ∞. Then the truth of the assertion A(κ) is preserved if in 1 we say instead that1′. For each m, F(m) has at most Rm elements.We shall use this observation later on. We now define three more statements, denoted B(κ), C(κ) and D(κ), about cardinal number κ.


2008 ◽  
Vol 58 (6) ◽  
Author(s):  
Ľ. Holá ◽  
Tanvi Jain ◽  
R. McCoy

AbstractA set-valued mapping F from a topological space X to a topological space Y is called a cusco map if F is upper semicontinuous and F(x) is a nonempty, compact and connected subset of Y for each x ∈ X. We denote by L(X), the space of all subsets F of X × ℝ such that F is the graph of a cusco map from the space X to the real line ℝ. In this paper, we study topological properties of L(X) endowed with the Vietoris topology.


2012 ◽  
Vol 11 (01) ◽  
pp. 1250014 ◽  
Author(s):  
PAPIYA BHATTACHARJEE

This paper studies algebraic frames L and the set Min (L) of minimal prime elements of L. We will endow the set Min (L) with two well-known topologies, known as the Hull-kernel (or Zariski) topology and the inverse topology, and discuss several properties of these two spaces. It will be shown that Min (L) endowed with the Hull-kernel topology is a zero-dimensional, Hausdorff space; whereas, Min (L) endowed with the inverse topology is a T1, compact space. The main goal will be to find conditions on L for the spaces Min (L) and Min (L)-1 to have various topological properties; for example, compact, locally compact, Hausdorff, zero-dimensional, and extremally disconnected. We will also discuss when the two topological spaces are Boolean and Stone spaces.


2014 ◽  
Vol 25 (8) ◽  
pp. 1705-1754 ◽  
Author(s):  
LUCA MOTTO ROS ◽  
PHILIPP SCHLICHT ◽  
VICTOR SELIVANOV

The structure of the Wadge degrees on zero-dimensional spaces is very simple (almost well ordered), but for many other natural nonzero-dimensional spaces (including the space of reals) this structure is much more complicated. We consider weaker notions of reducibility, including the so-called Δ0α-reductions, and try to find for various natural topological spaces X the least ordinal αX such that for every αX ⩽ β < ω1 the degree-structure induced on X by the Δ0β-reductions is simple (i.e. similar to the Wadge hierarchy on the Baire space). We show that αX ⩽ ω for every quasi-Polish space X, that αX ⩽ 3 for quasi-Polish spaces of dimension ≠ ∞, and that this last bound is in fact optimal for many (quasi-)Polish spaces, including the real line and its powers.


2016 ◽  
Vol 24 (3) ◽  
pp. 167-172
Author(s):  
Kazuhisa Nakasho ◽  
Keiko Narita ◽  
Yasunari Shidama

Summary In this article, we mainly formalize in Mizar [2] the equivalence among a few compactness definitions of metric spaces, norm spaces, and the real line. In the first section, we formalized general topological properties of metric spaces. We discussed openness and closedness of subsets in metric spaces in terms of convergence of element sequences. In the second section, we firstly formalize the definition of sequentially compact, and then discuss the equivalence of compactness, countable compactness, sequential compactness, and totally boundedness with completeness in metric spaces. In the third section, we discuss compactness in norm spaces. We formalize the equivalence of compactness and sequential compactness in norm space. In the fourth section, we formalize topological properties of the real line in terms of convergence of real number sequences. In the last section, we formalize the equivalence of compactness and sequential compactness in the real line. These formalizations are based on [20], [5], [17], [14], and [4].


1972 ◽  
Vol 24 (3) ◽  
pp. 379-389 ◽  
Author(s):  
Anthony W. Hager

All topological spaces shall be uniformizable (completely regular Hausdorff). A uniformity on X shall be viewed as a collection μ of coverings of X, via the manner of Tukey [20] and Isbell [16], and the associated uniform space denoted μX. Given the uniformizable topological space X, we shall be concerned with compatible uniformities as follows (discussed more carefully in § 1). The fine uniformity α (finest compatible with the topology); the “cardinal reflections“ αm of α (m an infinite cardinal number) ; αc, the weak uniformity generated by the real-valued continuous functions.With μ standing, generically, for one of these uniformities, we consider the question: when is μ(X × Y) = μX × μY For μ = αℵ0 (the finest compatible precompact uniformity), the problem is equivalent to that of whenβ(X × Y) = βX × βY,β denoting Stone-Cech compactification; this is answered by the theorem of Glicksberg [9]. For μ = α, we have Isbell's generalization [16, VI1.32].


2016 ◽  
Vol 437 (1) ◽  
pp. 590-604
Author(s):  
Elói Medina Galego ◽  
Michael A. Rincón-Villamizar
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document