scholarly journals On Partitioning and Packing Products with Rectangles

1994 ◽  
Vol 3 (4) ◽  
pp. 429-434 ◽  
Author(s):  
Rudolf Ahlswede ◽  
Ning Cai

In [1] we introduced and studied for product hypergraphs where ℋi = (i,ℰi), the minimal size π(ℋn) of a partition of into sets that are elements of . The main result was thatif the ℋis are graphs with all loops included. A key step in the proof concerns the special case of complete graphs. Here we show that (1) also holds when the ℋi are complete d-uniform hypergraphs with all loops included, subject to a condition on the sizes of the i. We also present an upper bound on packing numbers.

2016 ◽  
Vol 26 (2) ◽  
pp. 183-194 ◽  
Author(s):  
EMMA COHEN ◽  
WILL PERKINS ◽  
PRASAD TETALI

We consider the Widom–Rowlinson model of two types of interacting particles on d-regular graphs. We prove a tight upper bound on the occupancy fraction, the expected fraction of vertices occupied by a particle under a random configuration from the model. The upper bound is achieved uniquely by unions of complete graphs on d + 1 vertices, Kd+1. As a corollary we find that Kd+1 also maximizes the normalized partition function of the Widom–Rowlinson model over the class of d-regular graphs. A special case of this shows that the normalized number of homomorphisms from any d-regular graph G to the graph HWR, a path on three vertices with a loop on each vertex, is maximized by Kd+1. This proves a conjecture of Galvin.


2009 ◽  
Vol 18 (5) ◽  
pp. 803-818 ◽  
Author(s):  
HANNO LEFMANN ◽  
YURY PERSON ◽  
VOJTĚCH RÖDL ◽  
MATHIAS SCHACHT

For k-uniform hypergraphs F and H and an integer r, let cr,F(H) denote the number of r-colourings of the set of hyperedges of H with no monochromatic copy of F, and let $c_{r,F}(n)=\max_{H\in\ccHn} c_{r,F}(H)$, where the maximum runs over all k-uniform hypergraphs on n vertices. Moreover, let ex(n,F) be the usual extremal or Turán function, i.e., the maximum number of hyperedges of an n-vertex k-uniform hypergraph which contains no copy of F.For complete graphs F = Kℓ and r = 2, Erdős and Rothschild conjectured that c2,Kℓ(n) = 2ex(n,Kℓ). This conjecture was proved by Yuster for ℓ = 3 and by Alon, Balogh, Keevash and Sudakov for arbitrary ℓ. In this paper, we consider the question for hypergraphs and show that, in the special case when F is the Fano plane and r = 2 or 3, then cr,F(n) = rex(n,F), while cr,F(n) ≫ rex(n,F) for r ≥ 4.


2001 ◽  
Vol 66 (4) ◽  
pp. 1865-1883 ◽  
Author(s):  
Chaz Schlindwein

One of the main goals in the theory of forcing iteration is to formulate preservation theorems for not collapsing ω1 which are as general as possible. This line leads from c.c.c. forcings using finite support iterations to Axiom A forcings and proper forcings using countable support iterations to semi-proper forcings using revised countable support iterations, and more recently, in work of Shelah, to yet more general classes of posets. In this paper we concentrate on a special case of the very general iteration theorem of Shelah from [5, chapter XV]. The class of posets handled by this theorem includes all semi-proper posets and also includes, among others, Namba forcing.In [5, chapter XV] Shelah shows that, roughly, revised countable support forcing iterations in which the constituent posets are either semi-proper or Namba forcing or P[W] (the forcing for collapsing a stationary co-stationary subset ofwith countable conditions) do not collapse ℵ1. The iteration must contain sufficiently many cardinal collapses, for example, Levy collapses. The most easily quotable combinatorial application is the consistency (relative to a Mahlo cardinal) of ZFC + CH fails + whenever A ∪ B = ω2 then one of A or B contains an uncountable sequentially closed subset. The iteration Shelah uses to construct this model is built using P[W] to “attack” potential counterexamples, Levy collapses to ensure that the cardinals collapsed by the various P[W]'s are sufficiently well separated, and Cohen forcings to ensure the failure of CH in the final model.In this paper we give details of the iteration theorem, but we do not address the combinatorial applications such as the one quoted above.These theorems from [5, chapter XV] are closely related to earlier work of Shelah [5, chapter XI], which dealt with iterated Namba and P[W] without allowing arbitrary semi-proper forcings to be included in the iteration. By allowing the inclusion of semi-proper forcings, [5, chapter XV] generalizes the conjunction of [5, Theorem XI.3.6] with [5, Conclusion XI.6.7].


1990 ◽  
Vol 33 (2) ◽  
pp. 169-180 ◽  
Author(s):  
Juan A. Gatica ◽  
Gaston E. Hernandez ◽  
P. Waltman

The boundary value problemis studied with a view to obtaining the existence of positive solutions in C1([0, 1])∩C2((0, 1)). The function f is assumed to be singular in the second variable, with the singularity modeled after the special case f(x, y) = a(x)y−p, p>0.This boundary value problem arises in the search of positive radially symmetric solutions towhere Ω is the open unit ball in ℝN, centered at the origin, Γ is its boundary and |x| is the Euclidean norm of x.


Author(s):  
E. S. Barnes

Letbe n linear forms with real coefficients and determinant Δ = ∥ aij∥ ≠ 0; and denote by M(X) the lower bound of | X1X2 … Xn| over all integer sets (u) ≠ (0). It is well known that γn, the upper bound of M(X)/|Δ| over all sets of forms Xi, is finite, and the value of γn has been determined when n = 2 and n = 3.


1972 ◽  
Vol 37 (4) ◽  
pp. 711-715 ◽  
Author(s):  
Krister Segerberg

Let ⊥, →, and □ be primitive, and let us have a countable supply of propositional letters. By a (modal) logic we understand a proper subset of the set of all formulas containing every tautology and being closed under modus ponens and substitution. A logic is regular if it contains every instance of □A ∧ □B ↔ □(A ∧ B) and is closed under the ruleA regular logic is normal if it contains □⊤. The smallest regular logic we denote by C (the same as Lemmon's C2), the smallest normal one by K. If L and L' are logics and L ⊆ L′, then L is a sublogic of L', and L' is an extension of L; properly so if L ≠ L'. A logic is quasi-regular (respectively, quasi-normal) if it is an extension of C (respectively, K).A logic is Post complete if it has no proper extension. The Post number, denoted by p(L), is the number of Post complete extensions of L. Thanks to Lindenbaum, we know thatThere is an obvious upper bound, too:Furthermore,.


1973 ◽  
Vol 5 (02) ◽  
pp. 217-241 ◽  
Author(s):  
A. M. Walker

Let observations (X 1, X 2, …, Xn ) be obtained from a time series {Xt } such that where the ɛt are independently and identically distributed random variables each having mean zero and finite variance, and the gu (θ) are specified functions of a vector-valued parameter θ. This paper presents a rigorous derivation of the asymptotic distributions of the estimators of A, B, ω and θ obtained by an approximate least-squares method due to Whittle (1952). It is a sequel to a previous paper (Walker (1971)) in which a similar derivation was given for the special case of independent residuals where gu (θ) = 0 for u > 0, the parameter θ thus being absent.


2014 ◽  
Vol 24 (4) ◽  
pp. 658-679 ◽  
Author(s):  
JÓZSEF BALOGH ◽  
PING HU ◽  
BERNARD LIDICKÝ ◽  
OLEG PIKHURKO ◽  
BALÁZS UDVARI ◽  
...  

We show that for every sufficiently largen, the number of monotone subsequences of length four in a permutation onnpoints is at least\begin{equation*} \binom{\lfloor{n/3}\rfloor}{4} + \binom{\lfloor{(n+1)/3}\rfloor}{4} + \binom{\lfloor{(n+2)/3}\rfloor}{4}. \end{equation*}Furthermore, we characterize all permutations on [n] that attain this lower bound. The proof uses the flag algebra framework together with some additional stability arguments. This problem is equivalent to some specific type of edge colourings of complete graphs with two colours, where the number of monochromaticK4is minimized. We show that all the extremal colourings must contain monochromaticK4only in one of the two colours. This translates back to permutations, where all the monotone subsequences of length four are all either increasing, or decreasing only.


2018 ◽  
Author(s):  
Benjamin Smith

We defined number of points with an inter-distance of β or more to necessarily exist on a plane. Furthermore, we aimed to reduce the range of this minimum value. We first showed that the upper bound of this value could be scaled by , and further reduced the constant that was multiplied. We compared the upper bound of and the Ramsey number in a special case and confirmed that was a better upper bound than except when were both small or trivial.


Sign in / Sign up

Export Citation Format

Share Document