scholarly journals Hypergraph Independent Sets

2012 ◽  
Vol 22 (1) ◽  
pp. 9-20 ◽  
Author(s):  
JONATHAN CUTLER ◽  
A. J. RADCLIFFE

The study of extremal problems related to independent sets in hypergraphs is a problem that has generated much interest. There are a variety of types of independent sets in hypergraphs depending on the number of vertices from an independent set allowed in an edge. We say that a subset of vertices isj-independentif its intersection with any edge has size strictly less thanj. The Kruskal–Katona theorem implies that in anr-uniform hypergraph with a fixed size and order, the hypergraph with the mostr-independent sets is the lexicographic hypergraph. In this paper, we use a hypergraph regularity lemma, along with a technique developed by Loh, Pikhurko and Sudakov, to give an asymptotically best possible upper bound on the number ofj-independent sets in anr-uniform hypergraph.

10.37236/7343 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Rachel Kirsch ◽  
A. J. Radcliffe

Extremal problems concerning the number of independent sets or complete subgraphs in a graph have been well studied in recent years. Cutler and Radcliffe proved that among graphs with $n$ vertices and maximum degree at most $r$, where $n = a(r+1)+b$ and $0 \le b \le r$, $aK_{r+1}\cup K_b$ has the maximum number of complete subgraphs, answering a question of Galvin. Gan, Loh, and Sudakov conjectured that $aK_{r+1}\cup K_b$ also maximizes the number of complete subgraphs $K_t$ for each fixed size $t \ge 3$, and proved this for $a = 1$. Cutler and Radcliffe proved this conjecture for $r \le 6$. We investigate a variant of this problem where we fix the number of edges instead of the number of vertices. We prove that $aK_{r+1}\cup {\mathcal C}(b)$, where ${\mathcal C}(b)$ is the colex graph on $b$ edges, maximizes the number of triangles among graphs with $m$ edges and any fixed maximum degree $r\le 8$, where $m = a \binom{r+1}{2} + b$ and $0 \le b < \binom{r+1}{2}$.


2001 ◽  
Vol 10 (3) ◽  
pp. 219-237 ◽  
Author(s):  
JEFF KAHN

We use entropy ideas to study hard-core distributions on the independent sets of a finite, regular bipartite graph, specifically distributions according to which each independent set I is chosen with probability proportional to λ[mid ]I[mid ] for some fixed λ > 0. Among the results obtained are rather precise bounds on occupation probabilities; a ‘phase transition’ statement for Hamming cubes; and an exact upper bound on the number of independent sets in an n-regular bipartite graph on a given number of vertices.


10.37236/656 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Jonathan Cutler ◽  
A. J. Radcliffe

The study of the number of independent sets in a graph has a rich history. Recently, Kahn proved that disjoint unions of $K_{r,r}$'s have the maximum number of independent sets amongst $r$-regular bipartite graphs. Zhao extended this to all $r$-regular graphs. If we instead restrict the class of graphs to those on a fixed number of vertices and edges, then the Kruskal-Katona theorem implies that the graph with the maximum number of independent sets is the lex graph, where edges form an initial segment of the lexicographic ordering. In this paper, we study three related questions. Firstly, we prove that the lex graph has the maximum number of weighted independent sets for any appropriate weighting. Secondly, we solve the problem of maximizing the number of independents sets in graphs with specified independence number or clique number. Finally, for $m\leq n$, we find the graphs with the minimum number of independent sets for graphs with $n$ vertices and $m$ edges.


10.37236/7329 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Beka Ergemlidze ◽  
Ervin Győri ◽  
Abhishek Methuku

A linear cycle in a $3$-uniform hypergraph $H$ is a cyclic sequence of hyperedges such that any two consecutive hyperedges intersect in exactly one element and non-consecutive hyperedges are disjoint. Let $\alpha(H)$ denote the size of a largest independent set of $H$.We show that the vertex set of every $3$-uniform hypergraph $H$ can be covered by at most $\alpha(H)$ edge-disjoint linear cycles (where we accept a vertex and a hyperedge as a linear cycle), proving a weaker version of a conjecture of Gyárfás and Sárközy.


Author(s):  
Raymond Greenlaw ◽  
H. James Hoover ◽  
Walter L. Ruzzo

We consider the selection of two basketball teams at a neighborhood playground to illustrate the greedy method. Usually the top two players are designated captains. All other players line up while the captains alternate choosing one player at a time. Usually, the players are picked using a greedy strategy. That is, the captains choose the best unclaimed player. The system of selection of choosing the best, most obvious, or most convenient remaining candidate is called the greedy method. Greedy algorithms often lead to easily implemented efficient sequential solutions to problems. Unfortunately, it also seems to be that sequential greedy algorithms frequently lead to solutions that are inherently sequential — the solutions produced by these algorithms cannot be duplicated rapidly in parallel, unless NC equals P. In the following subsections we will examine this phenomenon. We illustrate some of the important aspects of greedy algorithms using one that constructs a maximal independent set in a graph. An independent set is a set of vertices of a graph that are pairwise nonadjacent. A maximum independent set is such a set of largest cardinality. It is well known that finding maximum independent sets is NP-hard. An independent set is maximal if no other vertex can be added while maintaining the independent set property. In contrast to the maximum case, finding maxima? independent sets is very easy. Figure 7.1.1 depicts a simple polynomial time sequential algorithm computing a maximal independent set. The algorithm is a greedy algorithm: it processes the vertices in numerical order, always attempting to add the lowest numbered vertex that has not yet been tried. The sequential algorithm in Figure 7.1.1, having processed vertices 1,... , j -1, can easily decide whether to include vertex j. However, notice that its decision about j potentially depends on its decisions about all earlier vertices — j will be included in the maximal independent set if and only if all j' less than j and adjacent to it were excluded.


2012 ◽  
Vol 21 (4) ◽  
pp. 611-622 ◽  
Author(s):  
A. KOSTOCHKA ◽  
M. KUMBHAT ◽  
T. ŁUCZAK

A colouring of the vertices of a hypergraph is called conflict-free if each edge e of contains a vertex whose colour does not repeat in e. The smallest number of colours required for such a colouring is called the conflict-free chromatic number of , and is denoted by χCF(). Pach and Tardos proved that for an (2r − 1)-uniform hypergraph with m edges, χCF() is at most of the order of rm1/r log m, for fixed r and large m. They also raised the question whether a similar upper bound holds for r-uniform hypergraphs. In this paper we show that this is not necessarily the case. Furthermore, we provide lower and upper bounds on the minimum number of edges of an r-uniform simple hypergraph that is not conflict-free k-colourable.


2000 ◽  
Vol 37 (03) ◽  
pp. 705-717 ◽  
Author(s):  
Peter Donnelly ◽  
Eliane R. Rodrigues

Consider a population of fixed size consisting of N haploid individuals. Assume that this population evolves according to the two-allele neutral Moran model in mathematical genetics. Denote the two alleles by A 1 and A 2. Allow mutation from one type to another and let 0 &lt; γ &lt; 1 be the sum of mutation probabilities. All the information about the population is recorded by the Markov chain X = (X(t)) t≥0 which counts the number of individuals of type A 1. In this paper we study the time taken for the population to ‘reach’ stationarity (in the sense of separation and total variation distances) when initially all individuals are of one type. We show that after t ∗ = Nγ-1logN + cN the separation distance between the law of X(t ∗) and its stationary distribution converges to 1 - exp(-γe-γc ) as N → ∞. For the total variation distance an asymptotic upper bound is obtained. The results depend on a particular duality, and couplings, between X and a genealogical process known as the lines of descent process.


1981 ◽  
Vol 46 (2) ◽  
pp. 377-384 ◽  
Author(s):  
Julia F. Knight

This paper is concerned with algebraic independence in structures that are relatively simple for their size. It is shown that for κ a limit cardinal, if a structure of power at least κ is ∞ω-equivalent to a structure of power less than κ, then must contain an infinite set of algebraically independent elements. The same method of proof yields the fact that if σ is an Lω1ω-sentence (not necessarily complete) and σ has a model of power ℵω then some model of σ contains an infinite algebraically independent set.All structures are assumed to be of countable similarity type. Letters , etc. will be used to denote either a structure or the universe of the structure. If X ⊆ , the algebraic closure of X (in ), denoted by Cl(X), is the union of all finite sets that are weakly definable (in ) by Lωω-formulas with parameters from X. A set S is algebraically independent if for each a in S, a ∉ Cl(S – {a}). An algebraically independent set is sometimes called a “free” set (in [3] and [4], for example).It is known (see [5]) that any structure of power ℵn must have a set of n algebraically independent elements, and there are structures of power ℵn with no independent set of size n + 1. In power ℵω every structure will have arbitrarily large finite algebraically independent sets. However, it is consistent with ZFC that some models of power ℵω do not have any infinite algebraically independent set. Devlin [4] showed that if V = L, then for any cardinal κ, if every structure of power κ has an infinite algebraically independent set, then κ has a certain large cardinal property that ℵω can never possess.


2000 ◽  
Vol 37 (3) ◽  
pp. 705-717 ◽  
Author(s):  
Peter Donnelly ◽  
Eliane R. Rodrigues

Consider a population of fixed size consisting of N haploid individuals. Assume that this population evolves according to the two-allele neutral Moran model in mathematical genetics. Denote the two alleles by A1 and A2. Allow mutation from one type to another and let 0 < γ < 1 be the sum of mutation probabilities. All the information about the population is recorded by the Markov chain X = (X(t))t≥0 which counts the number of individuals of type A1. In this paper we study the time taken for the population to ‘reach’ stationarity (in the sense of separation and total variation distances) when initially all individuals are of one type. We show that after t∗ = Nγ-1logN + cN the separation distance between the law of X(t∗) and its stationary distribution converges to 1 - exp(-γe-γc) as N → ∞. For the total variation distance an asymptotic upper bound is obtained. The results depend on a particular duality, and couplings, between X and a genealogical process known as the lines of descent process.


Sign in / Sign up

Export Citation Format

Share Document