scholarly journals Turán Number of an Induced Complete Bipartite Graph Plus an Odd Cycle

2018 ◽  
Vol 28 (2) ◽  
pp. 241-252 ◽  
Author(s):  
BEKA ERGEMLIDZE ◽  
ERVIN GYŐRI ◽  
ABHISHEK METHUKU

Let k ⩾ 2 be an integer. We show that if s = 2 and t ⩾ 2, or s = t = 3, then the maximum possible number of edges in a C2k+1-free graph containing no induced copy of Ks,t is asymptotically equal to (t − s + 1)1/s(n/2)2−1/s except when k = s = t = 2.This strengthens a result of Allen, Keevash, Sudakov and Verstraëte [1], and answers a question of Loh, Tait, Timmons and Zhou [14].

10.37236/2471 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Craig Timmons

Let $F$ be a graph.  A graph $G$ is $F$-free if it does not contain $F$ as a subgraph.  The Turán number of $F$, written $\textrm{ex}(n,F)$, is the maximum number of edges in an $F$-free graph with $n$ vertices.  The determination of Turán numbers of bipartite graphs is a challenging and widely investigated problem.  In this paper we introduce an ordered version of the Turán problem for bipartite graphs.  Let $G$ be a graph with $V(G) = \{1, 2, \dots , n \}$ and view the vertices of $G$ as being ordered in the natural way.  A zig-zag $K_{s,t}$, denoted $Z_{s,t}$, is a complete bipartite graph $K_{s,t}$ whose parts $A = \{n_1 < n_2 < \dots < n_s \}$ and $B = \{m_1 < m_2 < \dots < m_t \}$ satisfy the condition $n_s < m_1$.  A zig-zag $C_{2k}$ is an even cycle $C_{2k}$ whose vertices in one part precede all of those in the other part.  Write $\mathcal{Z}_{2k}$ for the family of zig-zag $2k$-cycles.  We investigate the Turán numbers $\textrm{ex}(n,Z_{s,t})$ and $\textrm{ex}(n,\mathcal{Z}_{2k})$.  In particular we show $\textrm{ex}(n, Z_{2,2}) \leq \frac{2}{3}n^{3/2} + O(n^{5/4})$.  For infinitely many $n$ we construct a $Z_{2,2}$-free $n$-vertex graph with more than $(n - \sqrt{n} - 1) + \textrm{ex} (n,K_{2,2})$ edges.


10.37236/6257 ◽  
2017 ◽  
Vol 24 (1) ◽  
Author(s):  
Benny Sudakov ◽  
Jacques Verstraete

Burr and Erdős conjectured that for each $k,\ell \in \mathbb Z^+$ such that $k \mathbb Z + \ell$ contains even integers, there exists $c_k(\ell)$ such that any graph of average degree at least $c_k(\ell)$ contains a cycle of length $\ell$ mod $k$. This conjecture was proved by Bollobás, and many successive improvements of upper bounds on $c_k(\ell)$ appear in the literature. In this short note, for $1 \leq \ell \leq k$, we show that $c_k(\ell)$ is proportional to the largest average degree of a $C_{\ell}$-free graph on $k$ vertices, which determines $c_k(\ell)$ up to an absolute constant. In particular, using known results on Turán numbers for even cycles, we obtain $c_k(\ell) = O(\ell k^{2/\ell})$ for all even $\ell$, which is tight for $\ell \in \{4,6,10\}$. Since the complete bipartite graph $K_{\ell - 1,n - \ell + 1}$ has no cycle of length $2\ell$ mod $k$, it also shows $c_k(\ell) = \Theta(\ell)$ for $\ell = \Omega(\log k)$.


2018 ◽  
Vol 9 (12) ◽  
pp. 2147-2152
Author(s):  
V. Raju ◽  
M. Paruvatha vathana

10.37236/1748 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Nagi H. Nahas

The best lower bound known on the crossing number of the complete bipartite graph is : $$cr(K_{m,n}) \geq (1/5)(m)(m-1)\lfloor n/2 \rfloor \lfloor(n-1)/2\rfloor$$ In this paper we prove that: $$cr(K_{m,n}) \geq (1/5)m(m-1)\lfloor n/2 \rfloor \lfloor (n-1)/2 \rfloor + 9.9 \times 10^{-6} m^2n^2$$ for sufficiently large $m$ and $n$.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 925
Author(s):  
Michal Staš

The crossing number cr ( G ) of a graph G is the minimum number of edge crossings over all drawings of G in the plane. The main goal of the paper is to state the crossing number of the join product K 2 , 3 + C n for the complete bipartite graph K 2 , 3 , where C n is the cycle on n vertices. In the proofs, the idea of a minimum number of crossings between two distinct configurations in the various forms of arithmetic means will be extended. Finally, adding one more edge to the graph K 2 , 3 , we also offer the crossing number of the join product of one other graph with the cycle C n .


Author(s):  
Jürgen Jost ◽  
Raffaella Mulas ◽  
Florentin Münch

AbstractWe offer a new method for proving that the maxima eigenvalue of the normalized graph Laplacian of a graph with n vertices is at least $$\frac{n+1}{n-1}$$ n + 1 n - 1 provided the graph is not complete and that equality is attained if and only if the complement graph is a single edge or a complete bipartite graph with both parts of size $$\frac{n-1}{2}$$ n - 1 2 . With the same method, we also prove a new lower bound to the largest eigenvalue in terms of the minimum vertex degree, provided this is at most $$\frac{n-1}{2}$$ n - 1 2 .


Author(s):  
Matija Bucić ◽  
Nemanja Draganić ◽  
Benny Sudakov
Keyword(s):  

Abstract The Turán number ex(n, H) of a graph H is the maximal number of edges in an H-free graph on n vertices. In 1983, Chung and Erdős asked which graphs H with e edges minimise ex(n, H). They resolved this question asymptotically for most of the range of e and asked to complete the picture. In this paper, we answer their question by resolving all remaining cases. Our result translates directly to the setting of universality, a well-studied notion of finding graphs which contain every graph belonging to a certain family. In this setting, we extend previous work done by Babai, Chung, Erdős, Graham and Spencer, and by Alon and Asodi.


Sign in / Sign up

Export Citation Format

Share Document