scholarly journals On the edit distance function of the random graph

Author(s):  
Ryan R. Martin ◽  
Alex W. N. Riasanovsky

Abstract Given a hereditary property of graphs $\mathcal{H}$ and a $p\in [0,1]$ , the edit distance function $\textrm{ed}_{\mathcal{H}}(p)$ is asymptotically the maximum proportion of edge additions plus edge deletions applied to a graph of edge density p sufficient to ensure that the resulting graph satisfies $\mathcal{H}$ . The edit distance function is directly related to other well-studied quantities such as the speed function for $\mathcal{H}$ and the $\mathcal{H}$ -chromatic number of a random graph. Let $\mathcal{H}$ be the property of forbidding an Erdős–Rényi random graph $F\sim \mathbb{G}(n_0,p_0)$ , and let $\varphi$ represent the golden ratio. In this paper, we show that if $p_0\in [1-1/\varphi,1/\varphi]$ , then a.a.s. as $n_0\to\infty$ , \begin{align*} {\textrm{ed}}_{\mathcal{H}}(p) = (1+o(1))\,\frac{2\log n_0}{n_0} \cdot\min\left\{ \frac{p}{-\log(1-p_0)}, \frac{1-p}{-\log p_0} \right\}. \end{align*} Moreover, this holds for $p\in [1/3,2/3]$ for any $p_0\in (0,1)$ . A primary tool in the proof is the categorization of p-core coloured regularity graphs in the range $p\in[1-1/\varphi,1/\varphi]$ . Such coloured regularity graphs must have the property that the non-grey edges form vertex-disjoint cliques.

2019 ◽  
Vol 29 (1) ◽  
pp. 113-127
Author(s):  
Rajko Nenadov ◽  
Nemanja Škorić

AbstractGiven graphs G and H, a family of vertex-disjoint copies of H in G is called an H-tiling. Conlon, Gowers, Samotij and Schacht showed that for a given graph H and a constant γ>0, there exists C>0 such that if $p \ge C{n^{ - 1/{m_2}(H)}}$ , then asymptotically almost surely every spanning subgraph G of the random graph 𝒢(n, p) with minimum degree at least $\delta (G) \ge (1 - \frac{1}{{{\chi _{{\rm{cr}}}}(H)}} + \gamma )np$ contains an H-tiling that covers all but at most γn vertices. Here, χcr(H) denotes the critical chromatic number, a parameter introduced by Komlós, and m2(H) is the 2-density of H. We show that this theorem can be bootstrapped to obtain an H-tiling covering all but at most $\gamma {(C/p)^{{m_2}(H)}}$ vertices, which is strictly smaller when $p \ge C{n^{ - 1/{m_2}(H)}}$ . In the case where H = K3, this answers the question of Balogh, Lee and Samotij. Furthermore, for an arbitrary graph H we give an upper bound on p for which some leftover is unavoidable and a bound on the size of a largest H -tiling for p below this value.


10.37236/2262 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Ryan R. Martin

The edit distance between two graphs on the same labeled vertex set is the size of the symmetric difference of the edge sets.  The distance between a graph, G, and a hereditary property, ℋ, is the minimum of the distance between G and each G'∈ℋ.  The edit distance function of ℋ is a function of p∈[0,1] and is the limit of the maximum normalized distance between a graph of density p and ℋ.This paper utilizes a method due to Sidorenko [Combinatorica 13(1), pp. 109-120], called "symmetrization", for computing the edit distance function of various hereditary properties.  For any graph H, Forb(H) denotes the property of not having an induced copy of H.  This paper gives some results regarding estimation of the function for an arbitrary hereditary property. This paper also gives the edit distance function for Forb(H), where H is a cycle on 9 or fewer vertices.


Author(s):  
Richard Earl

Most functions have several numerical inputs and produce more than one numerical output. But even generally continuity requires that we can constrain the difference in outputs by suitably constraining the difference in inputs. ‘The plane and other spaces’ asks more general questions such as ‘is the distance a car has travelled a continuous function of its speed?’ This is a subtle question as neither the input nor output are numbers, but rather functions of time, with input the speed function s(t) and output the distance function d(t). In answering the question, it considers continuity between metric spaces, equivalent metrics, open sets, convergence, and compactness and connectedness, the last two being topological invariants that can be used to differentiate between spaces.


Author(s):  
Yilun Shang

We consider the random graph modelG(w)for a given expected degree sequencew=(w1,w2,…,wn). Warmth, introduced by Brightwell and Winkler in the context of combinatorial statistical mechanics, is a graph parameter related to lower bounds of chromatic number. We present new upper and lower bounds on warmth ofG(w). In particular, the minimum expected degree turns out to be an upper bound of warmth when it tends to infinity and the maximum expected degreem=O(nα)with0<α<1/2.


2016 ◽  
Vol 26 (2) ◽  
pp. 301-320 ◽  
Author(s):  
YUFEI ZHAO

We study the lower tail large deviation problem for subgraph counts in a random graph. Let XH denote the number of copies of H in an Erdős–Rényi random graph $\mathcal{G}(n,p)$. We are interested in estimating the lower tail probability $\mathbb{P}(X_H \le (1-\delta) \mathbb{E} X_H)$ for fixed 0 < δ < 1.Thanks to the results of Chatterjee, Dembo and Varadhan, this large deviation problem has been reduced to a natural variational problem over graphons, at least for p ≥ n−αH (and conjecturally for a larger range of p). We study this variational problem and provide a partial characterization of the so-called ‘replica symmetric’ phase. Informally, our main result says that for every H, and 0 < δ < δH for some δH > 0, as p → 0 slowly, the main contribution to the lower tail probability comes from Erdős–Rényi random graphs with a uniformly tilted edge density. On the other hand, this is false for non-bipartite H and δ close to 1.


2020 ◽  
Vol 40 (3) ◽  
pp. 807
Author(s):  
Yumei Hu ◽  
Yongtang Shi ◽  
Yarong Wei

10.37236/7537 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Elad Aigner-Horev ◽  
David Conlon ◽  
Hiệp Hàn ◽  
Yury Person ◽  
Mathias Schacht

An $n$-vertex graph $G$ of edge density $p$ is considered to be quasirandom if it shares several important properties with the random graph $G(n,p)$. A well-known theorem of Chung, Graham and Wilson states that many such `typical' properties are asymptotically equivalent and, thus, a graph $G$ possessing one such property automatically satisfies the others.In recent years, work in this area has focused on uncovering more quasirandom graph properties and on extending the known results to other discrete structures. In the context of hypergraphs, however, one may consider several different notions of quasirandomness. A complete description of these notions has been provided recently by Towsner, who proved several central equivalences using an analytic framework. We give short and purely combinatorial proofs of the main equivalences in Towsner's result.


2013 ◽  
Vol 23 (3) ◽  
pp. 434-448 ◽  
Author(s):  
ROMAN GLEBOV ◽  
TIBOR SZABÓ ◽  
GÁBOR TARDOS

We study the conflict-free chromatic number χCFof graphs from extremal and probabilistic points of view. We resolve a question of Pach and Tardos about the maximum conflict-free chromatic number ann-vertex graph can have. Our construction is randomized. In relation to this we study the evolution of the conflict-free chromatic number of the Erdős–Rényi random graphG(n,p) and give the asymptotics forp= ω(1/n). We also show that forp≥ 1/2 the conflict-free chromatic number differs from the domination number by at most 3.


1997 ◽  
Vol 6 (3) ◽  
pp. 337-347 ◽  
Author(s):  
MICHAEL KRIVELEVICH

For a graph G=(V, E) on n vertices, where 3 divides n, a triangle factor is a subgraph of G, consisting of n/3 vertex disjoint triangles (complete graphs on three vertices). We discuss the problem of determining the minimal probability p=p(n), for which a random graph G∈[Gscr ](n, p) contains almost surely a triangle factor. This problem (in a more general setting) has been studied by Alon and Yuster and by Ruciński, their approach implies p=O((log n/n)1/2). Our main result is that p=O(n)−3/5) already suffices. The proof is based on a multiple use of the Janson inequality. Our approach can be extended to improve known results about the threshold for the existence of an H-factor in [Gscr ](n, p) for various graphs H.


Sign in / Sign up

Export Citation Format

Share Document