Majorants of the Chromatic Number of a Random Graph

Author(s):  
P. Holgate
2019 ◽  
Vol 29 (1) ◽  
pp. 113-127
Author(s):  
Rajko Nenadov ◽  
Nemanja Škorić

AbstractGiven graphs G and H, a family of vertex-disjoint copies of H in G is called an H-tiling. Conlon, Gowers, Samotij and Schacht showed that for a given graph H and a constant γ>0, there exists C>0 such that if $p \ge C{n^{ - 1/{m_2}(H)}}$ , then asymptotically almost surely every spanning subgraph G of the random graph 𝒢(n, p) with minimum degree at least $\delta (G) \ge (1 - \frac{1}{{{\chi _{{\rm{cr}}}}(H)}} + \gamma )np$ contains an H-tiling that covers all but at most γn vertices. Here, χcr(H) denotes the critical chromatic number, a parameter introduced by Komlós, and m2(H) is the 2-density of H. We show that this theorem can be bootstrapped to obtain an H-tiling covering all but at most $\gamma {(C/p)^{{m_2}(H)}}$ vertices, which is strictly smaller when $p \ge C{n^{ - 1/{m_2}(H)}}$ . In the case where H = K3, this answers the question of Balogh, Lee and Samotij. Furthermore, for an arbitrary graph H we give an upper bound on p for which some leftover is unavoidable and a bound on the size of a largest H -tiling for p below this value.


Author(s):  
Yilun Shang

We consider the random graph modelG(w)for a given expected degree sequencew=(w1,w2,…,wn). Warmth, introduced by Brightwell and Winkler in the context of combinatorial statistical mechanics, is a graph parameter related to lower bounds of chromatic number. We present new upper and lower bounds on warmth ofG(w). In particular, the minimum expected degree turns out to be an upper bound of warmth when it tends to infinity and the maximum expected degreem=O(nα)with0<α<1/2.


2013 ◽  
Vol 23 (3) ◽  
pp. 434-448 ◽  
Author(s):  
ROMAN GLEBOV ◽  
TIBOR SZABÓ ◽  
GÁBOR TARDOS

We study the conflict-free chromatic number χCFof graphs from extremal and probabilistic points of view. We resolve a question of Pach and Tardos about the maximum conflict-free chromatic number ann-vertex graph can have. Our construction is randomized. In relation to this we study the evolution of the conflict-free chromatic number of the Erdős–Rényi random graphG(n,p) and give the asymptotics forp= ω(1/n). We also show that forp≥ 1/2 the conflict-free chromatic number differs from the domination number by at most 3.


2010 ◽  
Vol 1 (4) ◽  
pp. 345-356 ◽  
Author(s):  
Noga Alon ◽  
Benny Sudakov

10.37236/1643 ◽  
2002 ◽  
Vol 9 (1) ◽  
Author(s):  
Michael Krivelevich

A proper coloring of a graph $G=(V,E)$ is called optimal if the number of colors used is the minimal possible; i.e., it coincides with the chromatic number of $G$. We investigate the typical behavior of the number of distinct optimal colorings of a random graph $G(n,p)$, for various values of the edge probability $p=p(n)$. Our main result shows that for every constant $1/3 < a < 2$, most of the graphs in the probability space $G(n,p)$ with $p=n^{-a}$ have exponentially many optimal colorings.


2008 ◽  
Vol 17 (2) ◽  
pp. 271-286 ◽  
Author(s):  
PO-SHEN LOH ◽  
BENNY SUDAKOV

Let G be a graph with n vertices, and let k be an integer dividing n. G is said to be strongly k-colourable if, for every partition of V(G) into disjoint sets V1 ∪ ··· ∪ Vr, all of size exactly k, there exists a proper vertex k-colouring of G with each colour appearing exactly once in each Vi. In the case when k does not divide n, G is defined to be strongly k-colourable if the graph obtained by adding $k \big\lceil \frac{n}{k} \big\rceil - n$ isolated vertices is strongly k-colourable. The strong chromatic number of G is the minimum k for which G is strongly k-colourable. In this paper, we study the behaviour of this parameter for the random graph Gn,p. In the dense case when p ≫ n−1/3, we prove that the strong chromatic number is a.s. concentrated on one value Δ + 1, where Δ is the maximum degree of the graph. We also obtain several weaker results for sparse random graphs.


2005 ◽  
Vol 162 (3) ◽  
pp. 1335-1351 ◽  
Author(s):  
Dimitris Achlioptas ◽  
Assaf Naor

2019 ◽  
Vol 29 (2) ◽  
pp. 213-233
Author(s):  
Annika Heckel

AbstractAn equitable colouring of a graph G is a vertex colouring where no two adjacent vertices are coloured the same and, additionally, the colour class sizes differ by at most 1. The equitable chromatic number χ=(G) is the minimum number of colours required for this. We study the equitable chromatic number of the dense random graph ${\mathcal{G}(n,m)}$ where $m = \left\lfloor {p\left( \matrix{ n \cr 2 \cr} \right)} \right\rfloor $ and 0 < p < 0.86 is constant. It is a well-known question of Bollobás [3] whether for p = 1/2 there is a function f(n) → ∞ such that, for any sequence of intervals of length f(n), the normal chromatic number of ${\mathcal{G}(n,m)}$ lies outside the intervals with probability at least 1/2 if n is large enough. Bollobás proposes that this is likely to hold for f(n) = log n. We show that for the equitable chromatic number, the answer to the analogous question is negative. In fact, there is a subsequence ${({n_j})_j}_{ \in {\mathbb {N}}}$ of the integers where $\chi_=({\mathcal{G}(n_j,m_j)})$ is concentrated on exactly one explicitly known value. This constitutes surprisingly narrow concentration since in this range the equitable chromatic number, like the normal chromatic number, is rather large in absolute value, namely asymptotically equal to n/(2logbn) where b = 1/(1 − p).


Sign in / Sign up

Export Citation Format

Share Document