Diagnostic accuracy of CERAD total score in a Colombian cohort with mild cognitive impairment and Alzheimer's disease affected by E280A mutation on presenilin-1 gene

2015 ◽  
Vol 28 (3) ◽  
pp. 503-510 ◽  
Author(s):  
Daniel Camilo Aguirre-Acevedo ◽  
Fabian Jaimes-Barragán ◽  
Eliana Henao ◽  
Victoria Tirado ◽  
Claudia Muñoz ◽  
...  

ABSTRACTBackground:This study aimed to determine Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Neuropsychological Assessment Battery total score diagnostic accuracy in the diagnosis of mild cognitive impairment (MCI) and dementia in familial Alzheimer's disease (FAD) with E280A mutation on presenilin-1 gene (PSEN1).Methods:A cross-sectional study was conducted in a cohort of PSEN1 E280A carriers and non-carriers assessed between January 1995 and February 2013. During the first neuropsychological assessment, 76 were having dementia, 46 had MCI, and 1,576 were asymptomatic. CERAD cut-off points were established for MCI and dementia using a Receiver Operating Characteristics (ROC) analysis, and were further analyzed according to education level in two groups: low education level (eight years or less), and high education level (over eight years).Results:The area under curve–ROC CERAD total score for dementia was 0.994 (95% CI = 0.989–0.999), and that for MCI was 0.862 (95% CI = 0.816–0.908). The dementia diagnosis cut-off point for the low education group was 54, (98.4% sensitivity, 92.6% specificity), and that for the high education group was 67 (100% sensitivity, 94.1% specificity). The MCI diagnosis cut-off point for the low education group was 66 (91.2% sensitivity, 56.4% specificity), and that for the high education group was 72 (91.7% sensitivity, 76.3% specificity).Conclusions:The CERAD total score is a useful screening tool for dementia and MCI in a population at risk of FAD.

2021 ◽  
pp. 1-11
Author(s):  
Mirjam Frank ◽  
Jonas Hensel ◽  
Lisa Baak ◽  
Sara Schramm ◽  
Nico Dragano ◽  
...  

Background: The apolipoprotein E (APOE) ɛ4 allele is reported to be a strong genetic risk factor for mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Additional genetic loci have been detected that influence the risk for late-onset AD. As socioeconomic position (SEP) is also strongly related to cognitive decline, SEP has been suggested to be a possible modifier of the genetic effect on MCI. Objective: To investigate whether APOE ɛ4 and a genetic sum score of AD-associated risk alleles (GRSAD) interact with SEP indicators to affect MCI in a population-based cohort. Methods: Using data of 3,834 participants of the Heinz Nixdorf Recall Study, APOE ɛ4 and GRSAD by SEP interactions were assessed using logistic regression models, as well as SEP-stratified genetic association analysis. Interaction on additive scale was calculated using the relative excess risk due to interaction (RERI). All analysis were additionally stratified by sex. Results: Indication for interaction on the additive scale was found between APOE ɛ4 and low education on MCI (RERI: 0.52 [95% -confidence interval (CI): 0.01; 1.03]). The strongest genetic effects of the APOE ɛ4 genotype on MCI were observed in groups of low education (Odds ratio (OR): 1.46 [95% -CI: 0.79; 2.63] for≤10 years of education versus OR: 1.00 [95% -CI: 0.43; 2.14] for≥18 years of education). Sex stratified results showed stronger effects in women. No indication for interaction between the GRSAD and SEP indicators on MCI was observed. Conclusion: Results indicate that low education may have an impact on APOE ɛ4 expression on MCI, especially among women.


2018 ◽  
Vol 65 (4) ◽  
pp. 1459-1467 ◽  
Author(s):  
Dennis M. Hedderich ◽  
Judith E. Spiro ◽  
Oliver Goldhardt ◽  
Johannes Kaesmacher ◽  
Benedikt Wiestler ◽  
...  

2021 ◽  
Author(s):  
Dong-Woo Ryu ◽  
Yun Jeong Hong ◽  
Jung Hee Cho ◽  
Kichang Kwak ◽  
Jong-Min Lee ◽  
...  

Abstract A quantitative analysis of brain volume can assist in diagnosis of Alzheimer’s disease (AD) ususally accompannied by brain atrophy. With an automated analysis program Quick Brain Volumetry (QBraVo) developed for volumetric measurements, we measured regional volumes and ratios to evaluate their performance in discriminating AD dementia (ADD) and mild cognitive impairment (MCI) patients from normal controls (NC). Validation of QBraVo was based on intra-rater and inter-rater reliability with a manual measurement. The regional volumes and ratios to total intracranial volume (TIV) and to total brain volume (TBV) or total cerebrospinal fluid volume (TCV) were compared among subjects. The regional volume to total cerebellar volume ratio named Standardized Atrophy Volume Ratio (SAVR) was calculated to compare brain atrophy. Diagnostic performances to distinguish among NC, MCI, and ADD were compared between MMSE, SAVR, and the predictive model. In total, 56 NCs, 44 MCI, and 45 ADD patients were enrolled. The average run time of QBraVo was 5 minutes 36 seconds. Intra-rater reliability was 0.999. Inter-rater reliability were high for TBV, TCV, and TIV (R = 0.97, 0.89 and 0.93, respectively). The medial temporal SAVR showed the highest performance for discriminating ADD from NC (AUC = 0.808, diagnostic accuracy = 80.2%). The predictive model using both MMSE and medial temporal SAVR improved the diagnostic performance for MCI in NC (AUC = 0.844, diagnostic accuracy = 79%). Our results demonstrated QBraVo as a fast and accurate method to measure brain volume. The regional volume calculated as SAVR could help to diagnose ADD and MCI and increase diagnostic accuracy for MCI.


2020 ◽  
pp. 1-7
Author(s):  
Gemma Roberts ◽  
Paul C. Donaghy ◽  
Jim Lloyd ◽  
Rory Durcan ◽  
George Petrides ◽  
...  

Background Dopaminergic imaging is an established biomarker for dementia with Lewy bodies, but its diagnostic accuracy at the mild cognitive impairment (MCI) stage remains uncertain. Aims To provide robust prospective evidence of the diagnostic accuracy of dopaminergic imaging at the MCI stage to either support or refute its inclusion as a biomarker for the diagnosis of MCI with Lewy bodies. Method We conducted a prospective diagnostic accuracy study of baseline dopaminergic imaging with [123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane single-photon emission computerised tomography (123I-FP-CIT SPECT) in 144 patients with MCI. Images were rated as normal or abnormal by a panel of experts with access to striatal binding ratio results. Follow-up consensus diagnosis based on the presence of core features of Lewy body disease was used as the reference standard. Results At latest assessment (mean 2 years) 61 patients had probable MCI with Lewy bodies, 26 possible MCI with Lewy bodies and 57 MCI due to Alzheimer's disease. The sensitivity of baseline FP-CIT visual rating for probable MCI with Lewy bodies was 66% (95% CI 52–77%), specificity 88% (76–95%) and accuracy 76% (68–84%), with positive likelihood ratio 5.3. Conclusions It is over five times as likely for an abnormal scan to be found in probable MCI with Lewy bodies than MCI due to Alzheimer's disease. Dopaminergic imaging appears to be useful at the MCI stage in cases where Lewy body disease is suspected clinically.


Sign in / Sign up

Export Citation Format

Share Document